
Sequencer

WtdObjSetSequencer

MergeSequencer

PriQueueSequencer FlatSetSequencer

WeightedSetSequencer

SetCollectionSequencer

Sequencers

A total of six sequencers are possible in the Academy, following a 2x3 decision
table. The first (binary) decision is whether component sets are added to the
Sequencer individually, following the addSet() method defined in the
SetCollectionSequencer interface, or whether sets are added in the form of a
WtdObjSet of key values together with a mapping function, following addSets() in
the WtdObjSetSequencer interface.

The ternary decision governs the data structures and algorithms used within the
Sequencer. The motivating question is how many and what sort of sets are to be
merged. One possibility is that all the sets to be merged are flat: that is, all the
weights within each component set are the same. In that case the component sets
can be ordered once based on their overall weights and explored in that order.

On the other hand, if the component sets are proper weighted object sets (that is, if
the weights of their component objects vary), then they must be constantly shuffled
as they are merged. How to do this efficiently depends on whether there are few
component sets or many.

These are the Sequencers defined in MARIAN v.2.1. Remember that ovals denote
Java interfaces and rectangles Java classes.

*

MergeSequencer
(used in SuperclassManagers,

TextManager and
StructuredDocumentManager)

*

FlatSetSequencer
(used in UnwtdLinkClassManager)

?

WeightedSetSequencer
(used in WtdLinkClassManager)

Sets added individually Sets added as
WtdObjSet + Mapping

Flat sets
(any number)

Few proper sets
k•ck < log(k)•clog(k)

Many proper sets
log(k)•c log(k) < k•ck

If there are only a few sets, we are best off maintaining them in some relatively
unsophisticated data structure and using a linear search to determine the next
element in the sequence. The cost of finding the next elements among k
component sets is then k•ck where ck is relatively small. As k grows larger, it
becomes more efficient to use more aggressive data structures, where the cost of
finding the next element in the sequence is O(log(k)), or precisely log(k)•clog(k).
Since clog(k) is larger than ck, this complexity is only required when k is greater than
some threshold value. As a rule of thumb, this turning point is usually around 20;
our searchers usually either deal with values much less than this or much greater.

The decision table thus looks like this:

The colored cells are the Sequencers being implementing in v. 2.1 MARIAN. The
cells labeled “*” are not required except as conveniences, since we can always
take a collection of individual sets and create a “key” WtdObjSet to and a trivial
mapping to recover them. However, if the code for them can be produced easily
while building the corresponding WtdObjSetSequencers, they should be. In
particular, the Sequencer in the lower left corner has already been defined as the
“empty” PriQueueSequencer class.

The Sequencer labeled “?” can also be passed over in v.2.1, but it should be
designed for. More sophisticated versions of the TextManager, projected for v. 2.2,
will be clearer and simpler to code if we have it available at that time.

RKF 30Nov99

