
Information Interactions:

User Interface Objects

for

CODER, INCARD, and MARIAN

v. 2.5

Robert France

24 August 1992

1Table of Contents

Introduction .. 2

About This Document ... 5

General Notes ... 8

Implementation Notes ... 13

Interface Object .. 14

Base Object .. 18

 CODER .. 20

 MARIAN ... 21

Modal Objects ... 23

 Parent Modal Object .. 25

 Information Display .. 26

 Yes/No Question ... 27

 Information Question 28

 User Identification

 CODER Indentification 29

 MARIAN Login .. 30

Non-Modal Objects ... 31

 Parent Non-Modal Object 34

 Text Object Display .. 36

 Text Object Creation 38

 Query Creation ... 40

 Journal Article Form Query Creation 42

 Bibliographic Form Query Creation 44

 Simple Bibliographic Form Query Creation 47

 Text Collection Display 49

 Book Display .. 51

 Choice List Display ... 55

 Text-valued Hypernode (Text Node) Display . 57

 Text Node Collection Display 59

 MeSH Node Collection Display 61

 Retrieval Set Display 64

2

Introduction

Any information system needs a user interface: a program or program module that eases
the communication between the system's users and the underlying search and storage
software. This document describes (part of) the specifications for the user interface to a
family of information systems current at Virginia Tech: the experimental platform CODER, a
specialized version of CODER dealing with medical information called INCARD for
INformation about CARDiology, and a library catalog system named MARIAN.

All of these systems share certain characteristics. They are all text-based, with advanced
methods for dealing with English language documents. They each store several different
types of information, including different types of documents, highly formatted data, and
semantic networks. They all make use of the imagery of hypermedia to present information
as objects connected by links. And they are all implemented as networked sets of
communicating processes. One such process is the user interface manager.

The user interface manager used by these systems takes the form of an autonomous
process that runs in parallel with the information system. The sole responsibility of the
interface manager is to present system actions to the user and user actions to the system.

User Interface
Manager

Information System

The interaction between user and system can be thought of as a conversation, and like any
human-to-human conversation it contains many threads. The user may initiate a search on
the system's underlying information resources, remember a second topic that s/he wants
searched before the results of the first are back; ask for help; refer back to h/ir first query,
and so forth. The system may prompt for clarification on a misspelled word; present partial
results for the first search; ask the user to narrow h/ir query to a more precise description;
present help; present warning messages; add further discoveries to its partial list, and so on.
These messages are interleaved in arbitrary ways: we say that this sort of interface
facilitates a mixed-initiate system.

3

We organize this apparently chaotic interaction in two ways: by invoking the discipline of
object-oriented programming, and by delving deeper into our understanding of
conversations.

Like a human conversation, the interaction between a user and an information system can
be seen as a sequence of acts, each of which occurs within the context of the preceding
conversation. Thus each act by the user either opens a new line of inquiry into the system's
information resources – including perhaps its information on its own states and operation –
or furthers an existing line of inquiry; and each act by the machine opens up new possiblities
for user acts. Except for global considerations like screen management, it is best to ignore
the conversation as a whole in favor of the concurrent threads that make it up. Each thread
can then be considered separately, as a linear series of conversational actions.

Human actions in conversations – what philosophers sometimes refer to as speech acts –
can be divided into three categories: statements, questions and commands. We generally
consider it impolite for machines to give humans commands, and it is relatively unusual for a
user to offer unsolicited information to a machine, so the conversations carried by our user
interfaces can be thought of as sequences of system statements and questions interspersed
with user questions, commands, and occasional statements.

The medium for this conversation is a continuous flow of objects created by the user
interface in response to user and system acts. These interaction objects, as we shall call
them, are objects in the object-oriented programming sense. This means two things: that
they are grouped into classes within an inheritance hierarchy, and that each is completely
defined by a certain amount of data and by the methods that it presents to deal with the data.
The classes we define and the hierarchy into which they fit are the subject of the body of this
document, and should be easy going for any object-oriented programmer. The unique
aspect of interaction objects is the way that we treat each class's methods.

The functionality associated with an interaction object has two parts: the computational
functions that the object presents to the information system and the user interface program,
which we shall call the methods for an object of the class, and the functions that it presents
to the user, which we shall call the possible user actions for the class. Each interaction
object carries a certain amount of information in itself – a message from the system; a
document or set of documents; a form for the user's next query – and it carries a set of
possible things the system can tell it to do – clear its message field; add new text to the end
of a document; disappear – but it also carries a spectrum of user acts enabled by the object.

This makes the object a carrier of context as well as information. Just as the context of a
human conversation constrains the possible responses to any act of one of the participants,
an information object constrains the "next moves" that the user can make within a
conversation thread. These moves typically include continuing the thread – getting further
results to an ongoing search, for instance – starting a new thread – taking one of the search
results as the starting point for a different search – and refering to the thread itself – getting
help or asking the system the status of the search. What is denied is the possiblity of
applying arbitrary actions in arbitrary contexts.

4

This approach must certainly be supplemented with a certain amount of global conversation
management. It must be possible, for instance, for the user to start a totally new thread,
unrelated to any that has gone before. This is the responsibility of the Base interaction
object class. It must also be possible for the user to return to objects from earlier in the
conversation,using them as branch points to start new threads. This sort of navigation is not
handled by any of the interaction object classes described in this document, although if the
objects are implemented as windows, much of it can be left to the window management
system. Similarly, it must be possible for the system to invoke a method of an object that
was created earlier in the conversation, even though many objects of its class may be active
at the time. We have made the convention that each object within a class is uniquely
determined by a string: its message for modal or title for non-modal objects. Thus a class
manager – or the user interface process itself – can always determine the object to which a
system method should be referred. How that is done, however, is also left to the interface
implementor.

The purpose of this document is simply to define the classes of interaction object needed by
the family of information systems that include CODER and MARIAN. It defines two important
aspects of the system: what moves, at any point in a user-system conversation, are legal for
the user to make, and what moves are legal for the system to make. Thus it is both a design
document and an implementation document. It serves the system designer by providing a
concrete framework within which the capabilities of a system can be defined or extended,
and it serves the implementor by specifying the low-level objects from which the user
interface is built. The remainder of the interface is left to the ingenuity of the implementor.

This document describes the classes of objects that mediate interactions betweeen users
and the CODER family of systems. Most of the categories of objects and interactions are
common throughout members of the CODER family. Some few, though, have been
specialized to deal with information objects from the medical domain explored by the
INCARD incarnation of CODER or bibliographic objects from the MARIAN library system.

Each class of interface objects is described two ways: as an abstract interaction and as a
concrete object presented to the user. Since current interface development in CODER is
concentrating on the X Window System, the concrete objects are all interpreted here as
windows. It is to be stressed, however, that the objects are also intended to be used in
non-windowing systems. Each class description is accompanied by a drawing of how a
member of that class might look in X. These drawings are preliminary, and meant to give
only rather broad hints on the final look and feel of the windows. They do, however, include
all the functionality required for each class. Thus, while any real implementation of the
classes is expected to have at least a slightly different look and feel, all implementations
should include all the described functionality.

Each class of abstract interaction is represented by a functional profile of the class. Both the
methods of the class presented to the body of CODER (the "call-ins") and the methods of
CODER invoked by the interaction object (the "call-backs") are detailed. This latter group is
particularly important for the abstract definiton, as it defines the categories of user actions
that effect the system outside of the interface. As of this version (2.4), abstract descriptions
of the user actions are somewhat lacking, and must be inferred from the X menus in many
classes. Please note, though, that the actions do not need to be implemented as menus
unless it is idiomatic, as it is in X, to use menus for the local functionality of individual objects.
Buttons, pop-ups, function keys, commands lines would all do as well.

After some short introductory matter, the document is separated into two sections, one on
modal and the other on non-modal windows. Each section begins with an inheritance
diagram for the interaction objects it covers. The remainder of the section is organized as an
inorder traversal of the class hierarchy. Classes with multiple parents are visited after the
last of their parents has been defined, so that the reader will be familiar with all aspects of
the class's heritage.

Each class description is laid out as follows. At the top of the first page is the name of the
class. Then follows a declaration in C for the object-creating function or constrcutor
(className::className() in C++ terms). An example use of the function is followed by a
drawing of the window that that example would produce in an X implemetation. A section of
notes follows; these are not intended to substitute for a close inspection of the drawing or for
the use of the reader's common sense, but to clarify points that may not be obvious. Further
sections, as appropriate, detail the possible user actions, the callbacks invoked, any
additional methods that the class supports, and class siblings and children.

3.

About This Document

1.

2.

5

Not every class in this description is intended to be used in an actual CODER system: some
are described for convenience of definition. For instance, neither the parent modal nor the
parent non-modal class is designed to be implemented, but both collect all the common
features of their categories. Classes intended for use in CODER systems are indicated by
an C after their class names in the inheritance diagram; classes for MARIAN by an M.
Classes without question marks in these annotations are the most necessary, and should be
implemented first.

The drawings of windows attempt to conform to the standards for Motif windows in the X
system. Since only one of the authors has any familiarity with Motif, some standards have
undoubtedly been violated. Implementors should be aware that this is unintentional, and are
encouraged to correct such oversights. Similarly, no attempt should be made to duplicate
the appearance of the windows or window components where it runs contrary to accepted or
practice or idiom. (For instance, none of the scroll bars have slides. This is strictly an
oversight; we expect implemented scroll bars to have whatever slides are common in the
idiom.) Finally, all of the windows are approximately the desired shape and size (relative to
each other). Implemented windows should begin their life in a shape and (relative) size
comparable to that shown. Minor changes to shape and size, however, are expected in any
real product.

5.

4.

6

Document History

This document began in early 1991 as a set of mock-ups for an X-Window interface to the
INCARD system, produced by P. Koushik. It was intergrated with PK's Functional
Specifications for CODER User Interface Managers and expanded to include lexical uses of
CODER by Robert. During the spring of 1991 it was substantially revised and added to by
Robert and PK, with much assistance at spotting and filling gaps by the current team of
CODER user interface implementors: Ajit Naidu, Nasser Ghazi, and Siva Challa. In the
summer of 1991, Robert further re-organized it and expanded it, and in the fall of that year
adapted it to service the MARIAN system. Ben Cline, Tim Rhodes, and Eskinder Sahle have
all contributed to that process.

V. 2.3 11 Sept. 91: This is the first "released" version. All previous versions were
 labelled "drafts" and should be considered such.

7

V. 2.4 27 Jan. 92: Major changes to the structure of the document: a table of contents
 and introdcution were added, as well as page numbers in the
 object inheritance diagrams. Some "window" talk was changed to
 "object" talk to better suit non-window implementations. The
 "Background" class was renamed "Base" and removed from the
 Modal Object hierarchy, where it really only belongs in X-Windows
 implementations. The only CLASSES changed were the
 Bibliographic Form Query Creation class and the Retrieval Set
 Display class, although minor errors were corrected in the User
 Identification and MeSH Node Display classes.

V. 2.5 24 Aug. 92: The interaction object hierarchy was completed by rooting it in a
 class of "Interaction Objects". All functionality comon to all objects
 in this system was removed to this class. In a few cases where
 object names were missing from additional methods (notably clear()
 and goAway()) or callbacks (notably sendHelp()), they were added.
 Default arguments were added to the biblioQueryCreation class, so
 that old queries may be summoned up and edited. In addition, an
 argument was added to the callback for that class to suggest a
 maximum number of retrievals to present in the first batch. Minor
 changes were made to menus in the the base object and query
 creation object classes. And as always, explanatory text was
 added and revised.

General Notes

All interaction object classes provide some way for the user to get help; either by buttons or
by menu selections. Help actions always result in processing outside of the user interface,
in CODER or MARIAN proper, to determine the correct response. Generally, this will
involve further calls from CODER or MARIAN to the interface to display non-modal
windows with scrolling text in them, using the showText() window function. Since these
further windows also have help provisions, nested Help actions may occur.

We make the standard distinction between "modal" and "non-modal" objects: a modal object
is one which demands the user's attention by making it impossible for hi/r to perform any
action until the object has been dealt with. These are intended to be used sparingly, and so
are limited to information and warning transactions and to the initial login dialog. Most
objects, and most classes of objects, are non-modal: they permit the user to ignore them
while performing other actions. Both modal and non-modal objects operate asynchronously
with the underlying information system (CODER or MARIAN), permitting the user to request
help or (in the non-modal case) to work with other transactions before returning to supply the
information requested in the object or choose an option that the object offers. All user
actions are signalled by "callbacks:" additional C functions that pass information back to the
underlying information system.

2.

3.

1.

4.

Inheritance among classes occurs in two ways. First, most subclasses are formed
through functional enrichment, either as an increase in the number or specificity of the
methods presented to the underlying information system, as an increase in the number or
subtlety of the actions that may be performed by a user, or – most commonly, as these two
are different aspects of the same thing – as an increase in both. Second, several child
classes are constructed out of combinations of parent classes. Objects of such classes are
composite objects, each of the parts of which can be recognized as objects of the parent
classes.

Methods and user actions of parent classes are always inherited by their children – there is
no defeating of inherited values – so methods, menu items, and so forth are not duplicated
in the descriptions of the window classes except where necessary to avoid confusion.

Within each object category – the modal and the non-modal – the class hierarchy has been
set up to follow the hierarchy of the data objects being manipulated. Not surprisingly, the
richest branches of the hierarchies deal with the class of text objects, its subclasses, and
classes of composite objects built from text objects. Little or no attempt is made to deal
with other primitive data objects such as integers or atoms, as it is assumed that each class
of primitives includes a morphism to map its members into unique string representations,
such as decimal representations of integers or names of atoms.

8

9

To be specific, we establish two hierarchies: a hierarchy of presentable information
objects, which are the objects that the system may store nd the user experience, and a
hierarchy of objects used as carriers of presented information. A portion of the first
hierarchy is shown below.

Presentable
Information Object

Presentable
as Text

Presentable as
Still Image

Presentable
as Sound ...

StringInteger Frame

ASCII
String

SGML
String

LaTeX
String

Bitmap PICT Image... Graph

Composite
Document

Atom

Information objects that can be presented as simple text include text objects themselves,
text objects with formatting controls, and other atomic objects such as integers and atoms
where a canonical mapping into text hs been defined. It is also possible to present some
classes of composite objects as text. For instance, it is fairly common to present a frame
object or a record object as a block of text, using formatting control to distinguish the slots
or fields:

 Title: Beginning model theory
 Author: Bridge, Jane
 Imprint: Publisher: Cambridge University Press
 Year: 1979
 Subject: Model theory

Other presentations are also possible. The bibliographicFormQuery class in this
document, for instance, takes a different approach to the same type of object.

Some information objects are not presentable as text, but may be presented usig sound,
still images, video and so forth. This document does not cover interactions involving these
objects, but could be extended to do so. The objects would look different, but the use of
objects to carry information and context, and to guide user actions, would be the same.

Some information objects, in constrast, cannot be carried well by any single presentation
object. One important class is the navigable graphs used in hypermedia. Unlike graphs
that can be adequately presented by a single still image, hypermedia networks must give
the user the means to move between nodes and among regions of the graph; to expand,
contract, and reorganize hi/r field of view. Much of this navigation requires graphic support
for visualization and manipulation. We have, however, been able to provide some support
for hypermedia using a composite of text objects to represent hypermedia nodes. Other
classes require a collection of objects in order to represent a set or list: a list of choices, a
set of retrieved documents, a collection of chapters in a book. An entire hypermedia
network, to combine the two classes, can be considered to be a set of hypernodes.

To represent this variety of information object classes: atomic objects, structured objects,
composite objects and collections of objects, we must use similar techniques to create and
combine the presentation classes used in constructing our interface objects. Take as an
example the text objects used in building the interaction objects in this document. We can
create several different kinds of text fields in our interfaces. On the one hand, we can
create text that the user can or cannot interact with. We distinguish three subclasses of
text here. There is untouchable text, used for the titles of objects and the labels on object
parts. The user cannot interact with this text at all, except to read it. There is selectable
text, which the user can select but cannot alter. Selectable text allows the user to call
attention to a part of a field; for example, it may support a Copy operation in editing.
Finally, there is editable text which the user may freely alter.

An orthogonal division separtes atomic text from divisible text. Atomic text may only be
manipulated as a unit; divisible text may be manipulated in smaller units. Common
examples of atomic text occur in menu items or (in some graphics tools) labels in graphs.
Divisible text is most familiar to us through word processors: editable divisible text is the
norm in most interaction objects. The atomic/divisible distinction does not apply to
untouchable text, but makes an important difference in both selectable and editable text
fields. This system of interface objects makes heavy use of two such categories: the short
atomic selectable text and the long divisible editable text (see diagram next page).

From these descendents of the text class we construct others through composition and
collection. Each interface object that we build uses these three techniques, of
specialization, composition and collection to create ever more complex classes of
interaction objects from the same basic building blocks.

These classes then become our tools for representation of information objects (see
diagram in two pages). Primitive objects like atoms and integers are represented by short
pieces of atomic text. Primitive string objects may be represented by different sorts of
primitive text objects in different presentation contexts. We can use a collection of short
texts to represent a list of alternatives, so that the system may dynamically construct lists
from which the user may make choices. A collection of long texts can represent a book,
either with each member of the collection predetermined by an analysis into chapters and
sections, or with each member being dynamically created by the user as s/he places
"bookmarks" in the text. Selectable atomic texts are useful as titles, both in the
conventional sense of the title of a text document and as the titles of fields in structured
objects. The interaction objects in this document comprise many variations on this theme.

10

Text Field Classes

Short Text

Sequence of
Short Texts

Long Text

Sequence of
Long Texts

Long Text with Short
Description (LTSD)

Sequence of
LTSDs

Long Text with Sequence
of Short Texts

Atomic TextSelectable
Text

Divisible Text

Text

Untouchable
Text

Editable
Text

Two complex examples are worth mentioning. As mentioned above, we treat hypermedia
networks as collection of hypernodes, where each node has both information content and
links to other nodes in the network. When this information content can be represented as
text, we refer to these as text-valued hypernodes, or simply text nodes. Each text node is
composed of a text object representing the nodal information, generally as a long editable
text, and a sequence of selectable atomic texts, each representing a link. These short
texts are constructed by the underlying information system, generally from the label on the
link together with a short description of the target node. A collection of these textNode
interface objects then serves as a viewport into the hypertext network.

The second example is the ordered set of documents retrieved by a query. This set must
be presented to the user in such a way as to make it possible to scan its members quickly,
either in the order recommended by the information system or in random order. To achieve
this we use a collection of long texts (the documents retrieved) with short descriptions, the
whole presented as a single interaction object.

11

Short Text

Sequence of
Short Texts

Long Text

Sequence of
Long Texts

Long Text with Short
Description (LTSD)

Sequence of
LTSDs

Long Text with Sequence
of Short Texts

Text

Retrieval Set (Ordered Set
of Matching Documents)

Hypernode

Choice List

Titled Document

Integer

Atom

String

Information Object Interaction Object

REPRESENTED BY

...

Book

REPRESENTED BY

REPRESENTED BY

REPRESENTED BY

REPRESENTED BY

REPRESENTED BY

Following thse principles has made it possible to organize an extremely complex set of
requirements into what we hope is a minimal system for achieving the broad functionality
required by advanced retrieval system like CODER and MARIAN. We hope that
understanding the principles will also make it possible for the reader to understand how the
set is organized and how it can cover the needs of such systems. Finally, we hope that
following the hierarchic nature of the windows and the presentation objects out of which
they are constructed will make the implementor's job easier, and the number and
complexity of the interaction object classes in this document less forbidding.

12

All functions, both window functions and callbacks, are to be written as integer-valued
functions that return 0 iff their action has been successfully performed. Window functions
should return negative values if they fail; some standard values are listed at the end of
"Writing Modules for the CODER/F3L Environment". Return values of the callbacks are to be
tested, and some appropriate action taken on a non-zero return, typically signalling the user.
All subroutines and system calls should be similarly tested, to avoid exceptional conditions.
Under no conditions should any of the functions exit without return ("bomb"; "die") or return a
0 if they have not been successful.

At the time of this writing, all text displayed in any window class is straight ASCII text. Plans
are already under way, though, to include format, font and style control. Immediate
expectations are for centered text, bold-faced text, and pre-selected text (probably using
reverse video). Development should not be stalled waiting for exact specifications of how
this should work. Rather if there are widgets available that permit text with some or all of
these attributes, they should be used, and the representation for formatting and style
documented. This applies both to what the user would perceive as text fields in windows,
and to the label, title and message fields that the user cannot access, but that are
determined at window creation time by method arguments.

Most of the displayed text contains ASCII tab and newline characters, which are to be
interpreted as usual. This is not always the case, though -- notable exceptions are dictionary
text and some of the text displayed in showText() windows. These texts can run for
indefinitely long times without any formatting control: texts over a thousand characters
"broad" are not uncommon. Two approaches can be taken with such text: either the text
can be broken on word boundaries into lines of reasonable length (say, between 70 and 80
characters), or the text can be left on a single line and reached through horizontal scrolling.
Either approach is acceptable, but if the second is taken, you should remember that there is
no theoretical limit to the size of the line that may result.

On a related note, titles for windows and other "untouchable" text fields may run up to 256
characters. Space should be left for the maximum possible, and if a title must be split into
lines to fit into the space, it should also be broken between words. In later versions, we may
include format control in tiles for such features as centered text, font control and so forth. If
means are available through some idiomatic tool for this, please use it and document how
such formatting can be achieved.

1.

Implementation Notes

2.

3.

4. Scroll bars are generally shown, but should not appear to the user until there is enough text
in a window to justify them. Then they should always appear. All text fields, and all choice
list fields, should include both horizontal and vertical scroll bars.

13

14

Modal Object

Interface Objects

CODER Base Object MARIAN Base Object

Non-Modal ObjectBase Object

Interface Object

Interface Object

General Notes

There is a line in the Tao Te Ching, "the perfect square has no corners." Similar paradoxes
abound in object-oriented programming. Here, for instance, the parent ineraction object has
no realization. It is a screen with no format; a window with neither size nor shape. It is in
some sense raw functionality; the encapsulation of the functions that all interaction objects
must present to user and system. To the system, it presents the capability of any object
class: creation and destruction of objects. To the user, it presents the abilities that we
guarantee the user to have in any situation: to quit the session, to review system status and
history, and to seek help. In addition, this class defines the editing capacity of the system,
even though its virtual objects have no editable fields. This ensures that the editable fields of
all actual objects, when defined, will behave in the same way, and that material cut or copied
from one will be able to be pasted into another.

Each class of interaction objects supports a call that creates a new object of that class. Due
to the architecture of the user interface manager that mediates the classes, and the fact that
it cannot be assumed that the interface manager will be implemented in an object-oriented
language, the constructor method has a different name for each class. In this document, the
constructor is detailed at the beginning of the description of each interface object class. The
name and signature of the destructor method, though, is constant:

 int
 goAway(+ObjectName)
 char* ObjectName; /* Title of a non-modal or message of a modal object. */

A unique object name is part of all calls to interface objects in this system. This name is
specified as part of every constructor. Constuctors called with the name of an existing object
are assumed to "re-construct" the object: to return the object to its initial state and replace all
specified features with their new values. For example, calling the constructor showTextObj()
on an existing textDisplay object will cause the text of the existing object to be replaced by
the text in the new call. The object name is used in any methods, such as goAway(), that are
supported by created objects; it is also used by the callbacks that signal user manipulation of
an object to identify which object has been affected. In the case of objects with editable
fields, for instance, a uniform method:

 int
 clear(+ObjectName)
 char* ObjectName; /* Title of a non-modal or message of a modal object. */

provides the system with the capability of resetting all editable fields to null. Calling one of
these "additional methods" with an object name that is not assocaited with an extant object
has no effect on the user interface process, but will result in a non-zero return value for the
method.

15

At any time in the system/user dialog, the user has certain inalienable ablitities: the ability to
ask for help, to review the status of the dialog, and to quit. How these abilities are provided
varies both among implmentations and among the classes of windows. For example, Help is
regarded as an atomic action in a modal object, whereas in non-modal objects it involves a
choice of subjects, and is thus generally implemented as a menu. However it appears,
though, it is present in every case, and it produces the same callback to the underlying
system:

 int
 sendHelp(+ObjectName, +ItemName)
 char* ObjectName; /* Title of a non-modal or message of a modal object. */
 char* ItemName; /* Class name for modal objects; subject for non-modal. */

Similarly, it is always possible for the user to quit, although this may require different actions
under different circumstances. In the NeXTStep implementation, for instance, Quit is
provided for modal objects by allowing the user to access the Base menu while the modal
object is on screen; while other implementations require it to be a button on the object itself.
Quit triggers both whatever local processing is needed to shut down the user interface and a
callback telling the underlying system to shut down. The callback is special instance of a
more general call:

 int
 endSesssion(+Condition)
 int Condition; /* 0==NORMAL (user chose "Quit" from menu). */
 /* Other values determined by user interface manager code. */

Status and history enquiries are user actions that are still under development at this writing
(v. 2.5). We believe that these are an important powers to give the user, and that once
given, they should be globally available. Consequently, this is the appropriate place to
define them. They just haven't been defined yet. MARIAN supports through a menu in the
base object, a callback:

 int
 status(+Title)
 char* Title; /* The title of the base object; thus presumably of the application. */

This call invokes processing by the MARIAN Session Manager that presumably eventually
results in a text object being synthesized and displayed to the user. How adequate this is,
and whether any sort of history facillity can be added to it, depends largely on the function of
the underlying system. Further exploration will doubtless yield refinements.

16

In interaction objecty classes where editable fields are present, the usual three functions,
Cut, Copy, and Paste, are provided for editing. Text or images cut or copied from any
object is saved in a single buffer for pasting into any editable field in that or any other object,
whether modal or non-modal. In fact, although modal objects have no menus by which to
invoke these functions, any "short cut" versions of editing commands should work even when
a modal object has control of the interface. The actual implementation of cutting, copying,
and pasting are handled by the user interface manager, and thus produce no callbacks.
The edit functions are defined here, at the top level of the hierarchy, but are not uniformly
available throughout the hierarchy. In particular, there is nothing to edit in either the parent
window or the Base windows, so the functions should be either absent or disabled. Certain
other classes of windows allow copying from, but not alteration of the text displayed.

17

18

Base Object

General Notes

This is the class that varies most between different implementations. Each implementation
style has an idiomatic way to deal with the basic functionality of an application, and how to
present it to the user. In a menu-based system, this functionality is typically encapsulated in
the "Main Menu," sometimes with the addition of function keys and the like to short-circuit the
flow of menus. In the Macintosh and other PARC-descended systems, the functionality is
represented by the (unique) "Menu Bar." The NeXT has a slightly different idiom, involving
an "Application Menu" displayed usually in the upper left-hand corner of the screen. In
X-Window systems, basic functionality is encapsulated in a "Background Window." And so
forth.

In any system, though, there is some way of executing various functions that radically
change the dialog between user and system: staring and stopping dialogs; quitting the
application; getting global help and checking system status, and so forth. These functions
are assigned in this system to the Base Object class. The representative Base objects that
follow are shown as X-style background windows. If you are implementing these in a
different idiom, do not be confused: the window is not important; the functions are.

INCARD

File Edit Search HelpBrowse

CODER / INCARD Base Object **

int
showBase(+Title)
 char *Title;

e.g.: showBase("INCARD")

NOTES:

Ideally, the contents of the Search, Browse, and Help menus should all be passed into this function as
parameters of type char *[]. Since dynamic menus appear very difficult in X, we are opting for this static
version. This window, and all other non-modal windows, should nonetheless be coded so that the menu
contents should be easily changed in the code, if not at run time.

19

File Quit

Edit Cut
 Copy
 Paste

Search MeSH Thesaurus
 Medlars Collection callback: searchCollection()
 Cardiology Course Notes
 Collins English Dictionary
 All

Browse MeSH Thesaurus – Hierarchically
 Medlars Collection – By Author callback: browseCollection()
 Medlars Collection – By Journal
 Cardiology Course Notes – Table of Contents
 Cardiology Course Notes – Index

Help On CODER
 On Searching
 On Browsing

MENUS:

int
searchCollection(+ItemName)
 char *ItemName;

int
browseCollection(+ItemName)
 char *ItemName;

CALLBACKS:

Menu Item Action

20

MARIAN Base Object **

This class differs from the incardBaseObject class only in the options in the Search, Browse, and Help
menus. See the note for the preceding class.

MARIAN

File Edit Preferences HelpStatus

int
showBase(+Title)
 char *Title;

e.g.: showBase("MARIAN")

NOTES:

21

Search Browse

File Quit

Edit Cut
 Copy
 Paste

Preferences

Search VT Catalog callback: searchCollection() – see preceding class

Browse By call number
 By cluster callback: browseCollection() – see preceding class
 Author list
 Subject list

Status Show session status callback: status() – inherited from parent

Help On MARIAN
 On Searching
 On Browsing

MENUS:

Menu Item Action

22

Modal Object

Modal Objects

Info. Question Object (C, M)

CODER User Identification
Object (C)

Information Display Object
(C, M)

Yes/No Question Object
(C, M)

23

MARIAN Login Object (M)

p. 25

p. 26 p. 27 p. 28

p. 29 p. 30

NOTE:

Classes labelled
(C) are used by
CODER; those
lablled (M) by
MARIAN.

General Notes

A modal object claims the user's attention: It appears "in the foreground" and will not
relinquish the user's attention until it has been dealt with. In a windowing system, this means
that a modal window appears "in front of" the other windows on the screen, and is the only
window on the screen that the user can manipulate until it has been sent away. In a menu
system, a modal object appears as an interaction that occurs as the user leaves one object
for another before the other appears. Having one modal object presented to the user does
not freeze the system, however: the system is operating independently, and may send other
messages to the interface while the user is dealing with the modal object. In that case, the
interface can queue the messages either in or out of the user's field of perception. IN
particular, the system can send messages to construct several modal objects of the same
class. The interface manager may show all these to the user simultaneously or sequentially,
but as far as the system is concerned, the interface is dealing with several modal objects at
once. Which is which is determined by the system-generated message associated with the
object. Thus, all callbacks from modal objects include the message text as a determiner of
which object they encode a user's response to.

All modal objects have a user function for acceptance of their associated action, usually
labeled Done. Most also give the user the ability to reject or cancel the action, usually
labeled Dismiss. Both of these buttons "send the object away," thus causing the initiative of
the dialog to return to the user. In all cases a function labeled Help is used to indicate
confusion or to request aid. Activating this function does not send the object away, but
initiates the display of a "help" text forwarded by CODER in a separate interaction. This help
object along with any further help objects if spawns should be like a non-modal object in that
the user may move and re-size it, keep it or make it go away. The original modal object,
though, should remain active throughout the user's actions with the help interaction, and no
other object should be available to the user until some user function on the modal object is
activated. At that time, both the modal object and all its generated help objects should go
away.

24

Parent Modal Object

Help

int
sendHelp(+Message, +ClassName)
 char *Message; /* The text of the window message (all actual modal objects */
 /* contain a unique message field.) */
 char* ClassName; /* The class of modal object where the call originates. */

CALLBACKS:

25

int
showInformation(+Message)
 char *Message;

e.g.: showInformation("The terms in Query #1 retrieve no documents.")

Information Display Object

NOTES:

HelpDone

The terms in Query #1 retrieve no documents.

If there is a standard "information" icon in X (in the Mac it is a person speaking) it should be included to
the left of the text, and the size of the window determined accordingly.

No callback need be made if Done is selected. The sendHelp() callback is inherited from the parent.

26

int
askYesNoQuestion(+Message)
 char *Message;
 char *Response; /* Space allocated by caller for up to 256 characters. */

e.g.: askYesNoQuestion("Query #3 retrieves 2,784 documents. Do you wish to see them?")

Yes/No Question Object

HelpNo

Query #3 retrieves 2,784 documents. Do you wish to see
them?

Yes

NOTES:

If there is a standard "Question" icon in X (in the Mac it is a person with a question mark balloon) it
should be included to the left of the text, and the size of the window determined accordingly.

int
yesNoAnswer(+Message, +Ans)
 char *Message; /* The message in the object, to identify what question is being */
 int Ans; /* answered. Which answer was chosen: 0='Yes'; 1 = 'No'. */

CALLBACKS:

27

int
askInfoQuestion(+Message)
 char *Message;

e.g.: askInfoQuestion("Please supply a simple ID to use in future sessions.")

Informational Question Object

HelpDone Dismiss

Please supply a simple ID to use in future sessions.

int
infoAnswer(+Message, +Ans, +Response)
 char *Message; /* The message in the object, to identify what question is being */
 int Ans; /* answered. Which action was chosen: 0='Done'; 1 = 'Dismiss'. */
 char *Response; /* The string entered by the user. */

CALLBACKS:

28

int
getUserID(+Message)
 char *Message;

e.g.: getUserID("Welcome to CODER. Please enter either your
 CODER identifier (if available) or your full name:")

CODER / INCARD User Identification Object

HelpDone Dismiss

Welcome to CODER. Please enter either your CODER
identifier (if available) or your full name:

CODER
ID:

Name:

NOTES:

This is basically just a double Informational Question object with static labels.

int
userIDAnswer(+Message, +Ans, ID, +Name)
 char *Message; /* The message in the object, to identify what question is being */
 int Ans; /* answered. Which action was chosen: 0='Done'; 1 = 'Dismiss'. */
 char *ID; /* The string(s) entered by the user (NOTE: either or both of */
 char *Name; /* these two may be null. */

CALLBACKS:

29

int
getLogin(+Message)
 char *Message;

e.g.: getLogin("Welcome to MARIAN Please log in:")

MARIAN Login Object

HelpDone Dismiss

Welcome to MARIAN Please log in:

Login:

Password:

NOTES:

This differs from the CODER/INCARD User Indentification object in using a
NON-ECHOING text field for the password.

int
userIDAnswer(+Message, +Ans, +Login, +Password)
 char *Message; /* The message in the window, to identify what question is being */
 int Ans; /* answered. Which action was chosen: 0='Done'; 1 = 'Dismiss'. */
 char *Login; /* The string(s) entered by the user (NOTE: either or both of */
 char *Password; /* these two may be null. */

CALLBACKS:

30

Non-Modal Objects

31

32

Non-Modal Object

Bitmap Object (C)Text Display Object
(C, M)

Text Collection Display
Object (C?, M?)

Book Display
Object (C?)

Text Creation Object
(C?, M?)

Text Query Creation
Object (C, M?)

Journal Article
Form Query
Creation Object
(C)

Text Node
Display Object

Text Node
Collection Display
Object (C)

MeSH Node
Collection Display
Object (C?)

Retrieval Set
Display Object
(M)

Bibliographic
Form Query
Creation Object
(M)

Choice List Display
Object (C, M)

NOTE:

Classes labelled
(C) are used by
CODER; those
lablled (M) by
MARIAN. Labels
with question
marks will be used
by the system in
question if they are
available, but are
not essential.

[NYI]

p. 34

p. 36

p. 38

p. 44p. 42

p. 40

p. 49

p. 51

p. 57

p. 55

p. 59

p. 61

p. 64

Non-modal windows generally use menus rather than buttons for control, although some
have buttons as well. In particular, Help is a menu in non-modal windows, with selections
determined by the window class. Selecting an item from the Help menu always results in a
callback to CODER. Every class of non-modal windows has two other associated menus:
File and Edit. The File menu always has at least one item, Quit, which triggers both a
callback to CODER telling it to shut down the system and whatever local processing is
needed to shut down the user interface. The Edit menu has the usual three functions, Cut,
Copy, and Paste. Text cut or copied in any window is saved in a single buffer for pasting
into any editable field in that or any other window, whether modal or non-modal. In fact,
although modal windows have no menus by which to invoke these functions, any "short cut"
versions of editing commands should work even when a modal window has control of the
interface. Non-modal windows are summoned by functions that return 0 if and only if the
window is created successfully. Some also have associated functions for clearing,
augmenting or replacing text fields, or for removing the window at CODER's initiative. All
have "go-away" buttons for removing them at the user's initiative, and all can be moved using
the standard dragging protocol. Re-sizing should also follow the standard protocol in X.

The edit functions are defined at the top level of the non-modal window hierarchy, but are not
uniformlyy available throughout the hierarchy. In particular, there is nothing to edit in either
the parent window or the Background window so the functions should be either absent or
disabled.. Certain other classes of windows allow copying from, but not alteration of the text
displayed.

General Notes
33

<< Title Bar >>

File Edit Help

Parent Non-Modal Object

NOTES:

No object of this class ever occurs in an actual interface: for one thing, there is no constructor to create a
new object of this type. If is included here as a handy place to centralize the functions common to all
non-modal objects.

All non-modal interface objects have a title, shown on a title bar or similar prominent place, that serves as
the unique name for that object. All non-modal objects have the following capabilities, exemplified in window
implementations by the following features: the user can utterly delete the object, in windows by a "go-away"
box. The user can remove the object from immediate consideration without destroying it, typically by a pair
of "minimize and maximize" boxes. In windowing systems, all non-modal objects can be moved and
re-sized, and will remain at their new location and size even while not in view. Further capabilities are
usually implemented as a set of menus on a menu bar. This includes the Quit, Help, and editing actions
inherited from the parent interface object. Following idiom, we have shown Quit as an option of a Fie menu,
and have added separate Edit and Help menus. In order that the Help action be sensitive to the object
from which it is called, its callback is parameterized by both window title (object name) and menu item.
These menus, together with their listed items and associated actions, are inherited by all descendent
classes of non-modal objects. The menus and menu contents are augmented in any actual non-modal class
to provide other contextually-determined actions to the user. In most cases, these actions generate
callbacks parameterized by the window title and by the menu item selected.

34

File Quit << Quit procesing inherited from parent interface object clas >>

Edit Cut
 Copy << handled by inetrface manager; inherited from parent >>
 Paste

Help On CODER / On MARIAN
 << Additional contents vary callback: sendHelp(), specialized form parent.
 from class to class >>

MENUS:

goAway() and clear(), inherited from parent interface object class.

ADDITIONAL METHODS:

Menu Item Action

int
sendHelp(+Title, +ItemName)
 char *Title;
 char *ItemName;

CALLBACKS:

35

Menu inheritance applies not only to entire menus, but to menu items. For instance, the Quit option of the
File menu is inherited by textCreation objects. These objects also have a Save item in that menu; this is
added to the Quit option, rahter than replacing it. Occasionally menus or their items are renamed by
descendent classes. When this is done, it is noted explicitly. Unless such a note is made, it chould be
assume that any menu or item deined in a parent class is duplicated in the child class.

Nowhere is this agglutination of menu items more noticeable than in the Help menu. Beginning from the
first item defined in this class, successive descendents each add items, until the most specialized nodes
have quite extensive lists of Help options. It will be noted that that first item is really strictly two items, one
for use in CODEr and one in MARIAN. Thus strictly speaking this class (and all of its descendents) are
strictly speaking pairs of sibling classes, differeing only in the first item of the Help menu. For the most part
we will ignore this in this, and all further case of close sibling classes.

Text Display Object

int
showText(+Title, +Text)
 char *Title;
 char *Text;

e.g.: showText("Help on CODER", "[[etc.]] ")

NOTES:

In addition to Quit, the File menu contains a Save option. Selecting this optoin causes the text to be saved
to the user's file space. This is probably accomplished by the user interface manager itself, but we treat it as
a callback for consistency.

The Search menu includes three items: Use selected text as query, Use entire document as query,
and Determine search scope. In order to select text to use as a query, the user must be able to highlight it
by some obvious point-and-click regimen. This should be the same regimen used for copying text, except
that the user selects a Search menu option rather than the standard "copy" action.

File Edit HelpSearch

Help on CODER

 [[etc.]]

36

CALLBACKS:

int
saveText(+Title, +Text) /* NOTE: This message may be caught and executed by the local user */
 char* Title; /* interface manager, rather than passed to the underlying system. */
 char* Text; /* The current configuration of the text object. */

int
searchText(+Title, +SelectedText) /***NOTE: Only a single callback is needed here, since */
 char *Title; /* the two actions differ only from the user's point of view */
 char *SelectedText; /* and in the amount of text sent, not in the effect of the */
 /* call. */
int
setSearchScope(+Title)
 char *Title;

File Save saveText()
 Quit

Edit Cut
 Copy Only Copy available.
 Paste

Search Use selected text as query searchText()
 Use entire document as query searchText()
 Determine search scope setSearchScope()

Help On searching
 On search scope

MENUS:

Menu Item Action

CHILDREN:

Text Object Creation (q.v.)
Text Collection Display (q.v.)
Text Node Display (q.v.)

Appendable Text Display: additional methods:
 int
 appendToText(+Title, +Text) /* Adds Text to the bottom of the text */
 char *Title; /* currently in the window named Title. */
 char *Text;

37

Text Creation Object

int
solicitText(+Title, +InitialText)
 char *Title;
 char *InitialText;

e.g.: solicitText("Note #342", "")

NOTES:

In addition to Quit and Save, the File menu contains an Open option. Again, this is handled by the user
interface manager, which conducts a dialog with the user to determine the localtion of the file to be opened,
reads in the text, and passes it back to the window.

The Edit menu has all three functions available and active.

This class is really a triplet of three closely related classes. Objects of the basic textCreationWindow class
should simply remain unchanged when an action is chosen via the Search menu. Two sibling classes can
be determined, however, both of which have been used in some CODER systems. The
blankingTextCreationWindow (call: solicitTextBlanking()) has its editable field cleared whenever the text is
sent to CODER. The vanishingTextQueryWindow (call: solicitTextVanishing()) "goes away" whenever a
query is sent. If these variants are difficult to implement separately, note that they can be constructed
externmally using the goAway() and clear() methods defined in the parent non-modal class.

File Edit HelpSearch

Note #342

38

CALLBACKS:

int
readText(-Text) /* NOTE: This message may be caught and executed by the local user */
 char* Text; /* interface manager, rather than passed to the underlying system. */

int
newText(+Title, +SelectedText)
 char *Title;
 char *SelectedText;

File Open callback: readText()
 Save
 Quit

Edit Cut
 Copy << All available. >>
 Paste

Search Use selected text as query
 Use entire document as query << inherited from textDisplay class >>
 Determine search scope

Help On CODER / On MARIAN
 On searching
 On search scope

MENUS:

Menu Item Action

CHILDREN:

Query Creation (q.v.)

 SIBLINGS:

Blanking Text Creation: additional methods: none.

VanishingText Creation: addiitonal methods: none.

39

Angina Pectoris

Cardiology Course Notes Query Window

Show information about:

Query Creation Object

NOTES:

This is a minor variant on the textCreationWindow class. The major diferences are the size of the editable
field and the addition of the Prompt text. The Search menu and its items have been renamed, but their
effect and the callback that they evoke is the same as in the parent. A vertical scroll bar should appear
when the user's text (here, "Angina Pectoris") exceeds the size of the editable field; text should wrap,
though, rather than the field expand horizontally.

File Edit HelpContinue

int
solicitQuery(+Title, +Prompt)
 char *Title;
 char *Prompt;

e.g.: solicitQuery("Cardiology Course Notes Query Window", "Show information about:")

MENUS:

Inherited from textCreationWindow class, with the substitution for Search of:

Continue Search Perform search callback: searchText(), as in textObjDisplay class

and the addition of:

 Help On constructing queries.

CALLBACKS:

Inherited from textCreationWindow class.

40

CHILDREN:

Journal Article Form Query Creation Window (q.v.)
Bibliographic Form Query Creation Window (q.v.)

41

Journal Article Form Query Creation Object

int
solicitJrnlArtQuery(+Title)
 char *Title;

e.g.: solicitJrnlArtQuery("Medlars journal article database search:")

NOTES:

Except for the trio of radio buttons, this window is basically four textQuery windows pasted together, and
all comments on that class and its children apply.

Any or all of the text arguments in the callback may be the null string. The KeyWordCoverage argument
encodes the selection from the three radio buttons left of the "Words in:" field: 0=All, 1=Title, 2=Abstract.

File Edit HelpContinue

Author(s):

Words in:

Journal:

Year(s):

Medlars journal article database search:

Abstract

All

Title

42

CALLBACKS:

int
jrnlArtQueryText(+TItle, +AuthorStr, +KeyWordCoverage, +KeyWordStr, +SourceStr, +DateStr)
 char *Title;
 char *AuthorStr;
 int KeyWordCoverage;
 char *KeyWordStr;
 char *SourceStr;
 char *DateStr;

MENUS:

Inherited from queryCreation class, with the addition of:

Continue search Use selected text as query.
 Use current field as query.
 Use entire form as query.

 Help On the journal article form.

43

Bibliographic Form Query Creation Object

int
solicitBiblioQuery(+Title, +AuthorStr, +Text1Coverage, +Text1Str, +Text2Coverage, +Text2Str,
 +Text3Coverage, +Text3Str, +DateStr)
 char* Title;
 char* AuthorStr;
 int Text1Coverage;
 char* Text1Str;
 int Text2Coverage;
 char* Text2Str;
 int Text3Coverage;
 char* Text3Str;
 char* DateStr;

e.g.: solicitBiblioQuery("Query #1:", "", 1, "cat dog", 2, "feline canine", 15, "", "")

NOTES:

This is an object for gathering up to five text fields: one to be filled with (partial descriptions of) the
author(s) of a work, one for the date of the work, and two to three others, each of which can be set to a
number of alternatives. The alternatives are still not completely determined at this point, but include at
least: "Title", "Subject", "Notes", "Title + Subject", "Title + Author", and "All". Where possible, these
should be implemeneted as a "pop-up menu", with default values "Title", "Subject", and if space permits
a third configurable text field, "All". Except for the alternative selection mechanism, this object is
basically five textObjQuery windows pasted together, and all comments on that class and its children
apply.

Any or all of the text arguments in the callback may be the null string. The Text*Coverage arguments
encode the selection from the alternatives, with: 1=Title, 2=Subject, 3=Title+Subject, 4=Notes,
5=Title+Notes, 8=Author, and so forth. Since Title, Subject, Notes and Author are the only atomic
values tus far defines, 15 is equivalent to All.

44

[[Drawing on next page.]]

File Edit HelpContinue

Year(s):

Author(s):

Query #1:

Words in:

45

Words in:

Words in:

Title

Subject

All

cat dog

feline canine

CALLBACKS:

int
biblioQueryText(+Title, +AuthorStr, +Text1Coverage, +Text1Str, +Text2Coverage, +Text2Str, +Text3Coverage,
 +Text3Str, +DateStr)
 char *Title;
 char *AuthorStr;
 int Text1Coverage;
 char *Text1Str;
 int Text2Coverage;
 char *Text2Str;
 int Text3Coverage;
 char *Text3Str;
 char *DateStr;

MENUS:

Inherited from queryCreationWindow class, with the callback changed in:

Continue Search Perform search callback: biblioQueryText()

and the addition of:

 Help On the bibliographc query form
 Re-using previous queries

46

47Simple Bibliographic Form Query Creation Object

int
solicitSimpleBiblioQuery(+Title, +AuthorStr, +Text1Str, +Text2Str, +Text3Str, +DateStr)
 char *Title;

e.g.: solicitSimpleBiblioQuery("Query #1:", "", "", "", "", "")

NOTES:

This is a simpler version of the preceding window, where neither the system nor the user can change the
coverage of the flexible text fields. It is defined for the convenience of implementors in environments
with no "pop-up" facilities, but might also be used for naive and confused users.

The callback is the same as for the full class, with fixed values for the Text*Coverage arguments.

CALLBACKS:

int
biblioQueryText(+AuthorStr, +Text1Coverage, +Text1Str, +Text2Coverage, +Text2Str, +Text3Coverage,
 +Text3Str, +DateStr)
 char *AuthorStr;
 int Text1Coverage = 1;
 char *Text1Str;
 int Text2Coverage = 2;
 char *Text2Str;
 int Text3Coverage = 0;
 char *Text3Str;
 char *DateStr;

[[Drawing on next page.]]

File Edit HelpContinue

Year(s):

Author(s):

Query #1:

Words in
Title

Words
Anywhere

Words in
Subject

48

Text Collection Display Object

File Edit HelpSearch

Documents retrieved by Query #1

NextPrevious

 [[This is the top document.]]

int
showTextColl(+Title, +FirstText)
 char *Title;
 char *FirstText;

e.g.: showTextColl("Documents retrieved by Query #1", "[[This is the top document.]] ")

NOTES:

This window is used to display closely bound groups of texts – such as documents retrieved by a single
query or pages in a book – in an orderly way. Multiple calls to addToTextColl() establish a sequence of
texts that the user can page through using the Previous and Next buttons. What happens at the ends of
the sequence are not specified here, but should be some obvious action idiomatic to the interface style, such
as wrapping around to the other end of the list, repeatedly displaying the end document, or displaying a
message to the user. In any case, the action should be local; no callbacks are associated with the buttons.

49

Inherited from textObjectDisplay class.

MENUS & CALLBACKS:

ADDITIONAL METHODS:

int
addToTextColl(+Title, +Text) /* Add to the end of the group of texts */
 char *Title; /* currently being displayed; not to the end */
 char *Text; /* of any single text. */

CHILDREN:

Course Notes Collection Display (q.v.)
Text Node Collection Display (q.v.)

50

This is a prototype for a hyperbook display window. Besides the normal flowing text with (optionally) font
control and style markings, the text also contains specialized markers for figures, footnotes, and bookmarks.
What these markers are is unimportant to the window implementation, as the means for following one of
them to the associated figure, note, or place in text is the same as that for editing or using part of the text as
a query: the special marker is selected, and a choice made from the Figure, Note, or Bookmark menu.
This choice generates a callback that results in a new text being added to the collection or a new figure
displayed in a graphics window (not covered in this document).

Creating new bookmarks and notes, in contrast, does require local processing. When the user selects
Create note from the Note menu or Place bookmark from the Bookmark it should first cause a newNote()
or newBookmark() callback, which alerts the body of CODER to the change and results in a string for the
new marker. That string then needs to be inserted by the window manager at the cursor position, and any
resulting updates handled.

The exact means of updating document text through addition of notes and bookmarks is still under
discussion. Two possibilities dominate: either changes are made incrementally with each call to newNote(),
newBookmark(), deleteNote() or deleteBookmark(); or all changes are accumulated until the user chooses a
Commit option from the File menu. This difference creates differences in the callbacks: in the first case,
the position of the insertion or deletion within the text must be passed to CODER proper, so that changes
can be made in the master copy of the text as well as in the local window. This may be difficult for the
window manager, as it requires translating cursor position into a byte offset from the beginning of the text.
In the second, the entire text can be shipped, with changes intact, upon selection of the Commit option, so
the problem does not arise. But this latter option requires sending large texts back to CODER, with an
associated transmission cost. In either case, some provision must be made for distinguishing which text
among the collection that the user is paging through is currently being altered. The means for even this
have yet to be established. The callbacks noted here are for the second option.

 Book Display Object

int
showBook(+Title, +FirstText)
 char *Title;
 char *FirstText;

e.g.: showBook("Cardiology Course Notes", "\bClinical Manifestations of Cardiac
 Ischemia\n\n\uAngina Pectoris\u\b\n\n Angina is a discomfort that results [[etc.]]")

ADDITIONAL METHODS:

int
addToBook(+Title, +Text)
 char *Title;
 char *Text;

[[Drawing on next page.]]

NOTES:

51

HelpCancel

Cardiology Course Notes

Clinical Manifestations of Cardiac Ischemia

Angina Pectoris

 Angina is a discomfort that results from a myocardial

supply that is not adequate for the simultaneous myoca

demand. This discomfort is often described as "pressin

or constricting". Angina is usually located restrostern

precordially and may radiate into the left arm, neck,

sometimes is felt only at these latter locations. Typical

intensity of the discomfort builds slowly and wears of

characterstic episode might last 3-5 minutes and rare

than 20-30 minutes.

 In the vast majority of patients with angina, myocard

NextPrevious

File Edit HelpSearch Bookmark NoteFigure

52

Inherited from textDisplay class, with the additions:

MENUS:

[[File Commit updateDoc()]]

Figure Show selected figure textLink()
 Show all figures

Bookmark Show/hide all bookmarks
 Place bookmark newBookmark()
 Remove bookmark deleteBookmark()
 Go to bookmark textLink()

Note Show/hide notes
 Create note newNote()
 Delete note deleteNote()
 Open note textLink()

Help On figures
 On bookmarks
 On notes

Menu Item Action

53

CALLBACKS:

Inherited from textDisplay class, with the additions:

int
textLink(+Title, +LinkText)
 char *Title;
 char *LinkText; /* The selected text of an in-document link: either a figure, note, or */
 /* bookmark marker. The "all figures" option is accomplished using */
 /* multiple calls to this callback. */
int
newNote(+Title, -NoteMarker)
 char *Title;
 char *NoteMarker; /* The text of the marker to be entered into the document displayed. */

int
deleteNote(+Title, +NoteMarker)
 char *Title;
 char *NoteMarker; /* The text of the marker to be deleted. */

int
newBookmark(+Title, -BookmarkMarker)
 char *Title;
 char *BookmarkMarker; /* The text of the marker to be entered into the document displayed. */

int
deleteBookmark(+Title, +BookmarkMarker)
 char *Title;
 char *BookmarkMarker; /* The text of the marker to be deleted. */

int
updateDoc(+Title, +Text)
 char *Title;
 char *Text;

54

Choice List Display Object

int
showChoiceList(+Title, +ChoiceVect , +NumChoices, +SuggestedChoiceNum)
 char *Title;
 char *ChoiceVect[];
 int NumChoices;
 int SelectedChoiceNum; /* 0="No selection", n<0 = "Center and highlight choice #n". */

e.g.: showChoiceList("Documents retrieved by Query #1",
 {"5361: Burn treatment by hyper-hydration in the abdominally injured rat.", "7592:
 Chemical and physical treatment of burn patients." , "10327: Burning down the
 house.", [[etc.]]} , 25, 0)

NOTES:

The Choose menu has two choices: Choose selected item(s) and Choose all. Items should be selectable by
pointing anywhere on the item and mousing. If it fits the X idiom, it should be possible to choose an item by simply
pointing and clicking a different button. Pointing and dragging, or following some other idiomatic way of selecting
multiple objects, result in several choices being selected and sent back to CODER.

The Edit menu has opnly the Copy option available. Since the smallest selectable piece of tex is a single line,
the text copied should always consist of a single line.

File Edit HelpChoose

Documents retrieved by Query #1

5361: Burn treatment by hyper-hydration in the abd
7592: Chemical and physical treatment of burn pati
10327: Burning down the house.

[[etc.]]

55

CALLBACKS:

int
userChoice(+Title, +Choice)
 char *Title;
 char *Choice;

int
userChoices(+Title, +ChoiceVect , +NumChoices)
 char *Title;
 char *ChoiceVect[];
 int NumChoices;

MENUS:

Choose Choose selected item(s) userChoice() or userChoices()
 Choose all userChoices()

Help On choosing

Menu Item Action

CHILDREN:

Text Node Display (q.v.)

Retrieval Set Display (q.v.)

Single Choice List Display: exactly like its parent, except that only a single item from the list of choices may
be selected or chosen at a time.

ADDITIONAL METHODS:

int
addToChoiceList(+Title, +ChoiceVect , +NumChoices)
 char *Title;
 char *ChoiceVect[];
 int NumChoices;

56

Text Node Display Object

int
showTextNode(+Title, +Text, +ChoiceVect , +NumChoices, +SelectedChoiceNum)
 char *Title;
 char *Text;
 char *ChoiceVect[];
 int NumChoices;
 int SelectedChoiceNum; /* 0="No selection", n<0 = "Center and highlight choice #n". */

e.g.: showTextNode("Amyl Nitrate", "A colorless, ordorless gas used in treating various cardiac conditions:
 the nitrate of a univalent hydrocarbon radical C5H11 derived from pentane.",
 {"MeSH Descriptors", " Angina Pectoris", "Medlars documents", " 63824", " 23892",
 " 98153", " 32411", " 2341", " 54245"} , 9, 0)

[[Drawing on next page.]]

NOTES:

This is basically a textObjectDisplay and a choiceListDisplay object pasted together. The menu items and
callbacks are determined by the parents, with the Choose menu being renamed Link.

CHILDREN:

Text Node Collection Display (q.v.)

57

File Edit HelpLinkSearch

Text.

Amyl Nitrate

A colorless, ordorless gas used in treating various cardiac
conditions: the nitrate of a univalent hydrocarbon radical
C5H11 derived from pentane.

MeSH Descriptors
 Angina Pectoris
Medlars documents
 63824
 23892
 98153
 32411

Links connected to this text.

58

Text Node Collection Display Object

int
showTextNodeColl(+Title, +FirstText, +FirstChoiceVect , +NumChoices, +SelectedChoiceNum)
 char *Title;
 char *FirstText;
 char *FirstChoiceVect[];
 int NumChoices;
 int SelectedChoiceNum; /* 0="No selection", n<0 = "Center and highlight choice #n". */

e.g.: showTextNodeColl("wolf [1,1,1]", "any of a class of animals of the genus lupus, including the gray wolf and
 the European timber wolf.", {"Full Entry", "Compare (forward)" , " timber wolf [1]",
 "Related Adjectives", " lupine [1]"} , 5, 0)

[[Drawing on next page.]]

ADDITIONAL METHODS:

int
addToTextNodeColl(+Title, +Text, +ChoiceVect , +NumChoices)
 char *Title;
 char *Text;
 char *ChoiceVect[];
 int NumChoices;

59

File Edit HelpLinkSearch

Text.

Collins English Dictionary

wolf [1,1,1]

Definition: any of a class of animals of the genus lupus,
including the gray wolf and the European timber wolf.

Full entry for wolf
Words defined using wolf [1,1,1]
Compare (forward)
 timber wolf [1]
Related Adjectives
 lupine [1]

Links connected to this text.

NextPrevious

60

int
showMeshNodeColl(+Title, +FirstText, +FirstHierVect , +NumHiers, SelectedHierNum, +FirstEntryVect,
 +NumEntries, SelectedEntryNum, +FirstMinorDescVect , +NumMinorDescs,
 +SelectedMinorDescNum, +FirstMajorDescVect, +NumMajorDescs,
 +SelectedMajorDescNum)
 char *Title;
 char *FirstText;
 char *FirstHierVect[];
 int NumHiers;
 int SelectedHierNum;
 char *FirstEntryVect[];
 int NumEntries;
 int SelectedEntryNum;
 char *FirstMinorDescVect[];
 int NumMinorDescs;
 int SelectedMinorDescNum;
 char *FirstMajorDescVect[];
 int NumMajorDescs;
 int SelectedMajorDescNum;

e.g.: showMeshNodeColl("Descriptor Information", "\bAngina Pectoris\n\n C14.280.211.198+\b\n\nThe
 symptom ofparoxysmal pain ischemia usually of distinctive ch radiation, and provoked
 by a tran duringwhich the oxygen required ...", { ..., "Coronary Disease C1",
 " Angina Pectoris C1", " Angina Pectoris, variant C1",
 " Angina , Unstable C1", " Coronary Aneurysm C1",
 " Coronary Arteriosclerosis C1", " Coronary Thromobosis C1", ... }, 15, 8,
 {"Stenocardia", "Angor Pectoris"} , 2, 0, {"Angina, Unstable"}, 1, 0,
 {"Chest Pain"}, 1, 0)

MeSH Node Display Object

[[Drawing on next page.]]

NOTES:

A texttDisplay object and four choiceListDisplay objects pasted together.The Link menu still invokes the same
userChoice() and userChoices() callbacks as used in the case with only a single class of links, as the type of
link followed to a destination is immaterial to the action of displaying the destination.

The Link menu does include an additional user action, "To MEDLARS collection", used to display documents in
MEDLARS indexed by the current MeSH term.

61

Term Description

Descriptor Information

Angina Pectoris

 C14.280.211.198+

The symptom of paroxysmal pain

ischemia usually of distinctive ch

radiation, and provoked by a tran

during which the oxygen required

Coronary Disease C1

 Angina Pectoris C1

 Angina Pectoris, variant C1

 Angina , Unstable C1

 Coronary Aneurysm C1

 Coronary Arteriosclerosis C1

 Coronary Thromobosis C1

NextPrevious

File Edit HelpSearch

Location in Hierarchy

Stenocardia

Angor Pectoris

Entry Terms referring to this descriptor

Minor descriptors referring to this descriptor

Angina, Unstable

Chest Pain

Major descriptors referring to this descriptor

Link
62

CALLBACKS:

int
linkMeshToMedlars(+Title, +Text)
 char *Title;
 char *Text;

63

Inherited from textNodeCollDisplay class, with the additions:

MENUS & CALLBACKS:

Link To MEDLARS colection linkMeshToMedlars()

Help On MeSH

Menu Item Action

ADDITIONAL METHODS:

int
addToTextNodeColl(+Title, +Text, +HierVect, +NumHiers, +EntryVect, +NumEntries,
 +MinorDescVect, +NumMinorDescs, +MajorDescVect, +NumMajorDescs)
 char *Title;
 char *Text;
 char *HierVect[];
 int NumHiers;
 char *tEntryVect[];
 int NumEntries;
 char *MinorDescVect[];
 int NumMinorDescs;
 char *MajorDescVect[];
 int NumMajorDescs;

Retrieval Set Display Object

int
showRetrievalColl(+Title, +RetrVect, +NumRetr, +MoreToCome)
 char *Title;
 struct
 {
 F3lFullIDType ID;
 char *ShortDesc;
 char *FullDesc;
 } RetrVect[];
 int NumRetr;
 Bool MoreToCome;

e.g.: showRetrievalColl("Documents retrieved by Query #1",
 {{#119:235134#, "Bridge, Jane: Beginning model theory", {...}},
 {#119:907871#, "Barwise, John (ed): Model theoretic logics", {..}},
 {#119:907871#, "Chang & Keisler: Model theory", {..}} }, 20, TRUE)

[[Drawing on next page.]]

64

NOTES:

This is another composite of a textDisplayObject and a choiceDisplayObject, but in this case the texts
corresponding to each chioce are input with the choice list. Consequently, there is no callback associated
with selecting a choice; instead, the object works locally to change the text.

The list of checkboxes labelled "Of interest?" is meant to scroll together with the choice list under the
command of the single vertical scroll bar in the upper panel. The checkboxes are initially all in the "off"
state; the user points and clicks to set them "on". When the "From documents of interest" option is selected
from the Search menu, the IDs associated with the "on" checkboxes are returned; if no boxes have been set
to "on", a modal information window should be spawned locally to instruct the user.

If MoreToCome is set to TRUE, then the "Find more using this query" option should be enabled when the
object is created. This allows the user to get a continuation of the retrieval set by initiating a showNextK()
callback, which in turn triggers an addToRetrievalColl() call from the system. The status of the option is then
determined by the MoreToCome argument of the addToRetrievalColl() call, and so forth until a FALSE is
recieved, at which time the option is disabled.

File Edit HelpDisplay

QA7.9 B234a 1979

Bridge, Jane

Beginning model theory: a relational approach

Cambridge, UK: Cambridge Univ. Press, 1979

Documents retrieved by Query #1

Work highlighted above

Bridge, Jane: Beginning model theory

Barwise, John (ed).: Model theoretic logics

Chang & Keisler: Model theory

Works found Of interest?

Search

65

CALLBACKS:

MENUS:

Continue Search From current document feedbackSearch()
 From documents of interest "
 Find more using this query showNextK()

Help On display options
 On feedback searches

Menu Item Action

int
feedbackSearch(+Title, +DocIDVect, +NumDocs)
 char *Title;
 F3lFullIDType DocIDVect[];
 int NumDocs;

int
showNextK(+Title, +K)
 char *Title;
 int K;

ADDITIONAL METHODS:

int
addToRetrievalColl(+Title, +RetrVect, +NumRetr, +MoreToCome)
 char *Title;
 struct
 {
 F3lFullIDType ID;
 char *ShortDesc;
 char *FullDesc;
 } RetrVect[];
 int NumRetr;
 Bool MoreToCome;

66

