
Development of a Modern OPAC: From REVTOLC to MARIAN�

Edward A. Foxy#, Robert K. France#,
Eskinder Sahley, Amjad Daoudyand Ben E. Cline#

Department of Computer Scienceyand Computing Center#
Virginia Polytechnic Institute and State University

Blacksburg VA 24061-0106

Abstract

Since 1986 we have investigated the problems and
possibilities of applying modern information re-
trieval methods to large online public access library
catalogs (OPACs). In the Retrieval Experiment —
Virginia Tech OnLine Catalog (REVTOLC) study
we carried out a large pilot test in 1987 and a larger,
controlled investigation in 1990, with 216 users and
roughly 500,000 MARC records. Results indicated
that a forms-based interface coupled with vector and
relevance feedback retrieval methods would be well
received. Recent efforts developing the Multiple Ac-
cess and Retrieval of Information with ANnotations
(MARIAN) system have involved use of a specially
developed object-oriented DBMS, construction of a
client running under NeXTSTEP, programming of a
distributed server with a thread assigned to each user
session to increase concurrency on a small network
of NeXTs, refinement of algorithms to use objects
and stopping rules for greater efficiency, usability
testing and iterative interface refinement.

�This work was funded in part by grants from the National
Science Foundation (Grants IRI-8703580 and IRI-9116991),
CLR (Grant 4048-C), OCLC, PRC, and the Virginia Center for
Innovative Technology.

1 Introduction

In 1986, the Virginia Tech Library provided us with
tapes containing all MARC records from their online
public access catalog (OPAC) system, which uses
software supported by VTLS Inc. Since that time a
coordinated research and development program fo-
cused on OPACs has been underway, involving the
Department of Computer Science, the Computing
Center, and the Library. This paper summarizes our
activities and findings, and the resulting software and
systems.

Important aspects of our work include:

� working with large (3-900,000 record) collec-
tions;

� controlled experimental studies with many test
subjects on the use of advanced retrieval meth-
ods for large OPACs;

� research with parallel processors (Sequent), and
development of a distributed, client-server pro-
duction system on a small network of low-cost
workstations (NeXTs), with threaded process-
ing under MACH;

� use of a specialized object-oriented DBMS and
object-oriented programming languages;

� application of principles of dialogue indepen-
dence and usability testing of the interface;

� providing an experimental OPAC search sys-
tem as an alternative to the University Library’s
regular OPAC system;

� morphological analysis using an online lexicon;

1

� optimization of space through compression and
a special inverted file organization;

� optimization of processing through stopping
rules for search; and

� simulation of user workload and monitoring of
system performance to support further tuning.

The sections below provide details regarding our
(largely unpublished) efforts. Section 2 summa-
rizes the experimental studies (REVTOLC), which
prompted our subsequent development work. Sec-
tion 3 briefly explains the object-oriented DBMS
(LEND) that we have developed and which underlies
the current production system (MARIAN). Section
4 gives details of the design, development, and user
testing of MARIAN. Section 5 discusses our plans
for future work, and Section 6 acknowledges many
of those who have assisted.

2 REVTOLC

In 1986 the Virginia Tech Library was consider-
ing adding Boolean search capabilities to its VTLS
system, and so dumped all of the MARC records
onto magnetic tapes in preparation for inversion on
a mainframe computer. We were given a copy of the
tapes to use for experimentation, and so carried out
the Retrieval Experiment — Virginia Tech OnLine
Catalog (REVTOLC) study.

2.1 Problem, Opportunity, and Approach

Many of the world’s libraries depend in part, or ex-
clusively, on an online public access catalog (OPAC)
so that patrons can locate desired publications, thus
eliminating use of conventional card catalogs [23].
Typically, expensive, centralized, mainframe com-
puters are involved. These systems allow the public
to use computers to search for information about var-
ious resources like books, serials, and audio-visual
publications [20]. However, OPACs are not always
very efficient, effective, or usable. This is in part due
to the distinctive characteristics of the problem area.
OPACs must service a heterogeneous group of chron-
ically infrequent users with complex relationships
between goals and behaviors and difficult informa-
tion retrieval tasks [1]. Some typical deficiencies of
current systems include: difficulty in expanding on

query results, excessive retrieval and null retrieval,
inconvenient displays, and under-utilization of sys-
tem features [31]. These serious problems threaten
our ability to support universal access to information.

Happily, advances in computer technology, in-
formation retrieval, and human-computer interaction
provide an exciting opportunity to explore and solve
these important problems. In particular,

� advances in computer technology allow us to
develop low-cost, highly efficient, modular sys-
tems;

� advances in information retrieval facilitate im-
provements in system effectiveness (along with
query expansion and avoidance of excessive re-
trieval); and

� advances in human-computer interaction can
empower diverse patrons by providing highly
usable systems (with convenient displays and
ready access to appropriate features).

Our approach has been to take advantage of these
opportunities through a coordinated program of re-
search and development. We conducted two con-
trolled experiments, in 1987 and 1990, to determine
which advanced retrieval methods would be most
useful for searching OPACs. As discussed in Sec-
tions 2.2 and 2.3, we also explored interface tech-
niques that would work well with those retrieval
methods. Further, as we proceeded with the ex-
periments, we became aware of numerous aspects
of system development necessary for a large-scale
implementation of our findings; many of these are
discussed in Sections 3 and 4.

2.2 1987 Study

The first REVTOLC study was carried out during
the Spring semester of 1987. The key features of our
pilot experiment are:

� comparison of vector, vector feedback,
Boolean, and extended Boolean (i.e., p-norm
[12, 28]) retrieval methods;

� volunteer assistance by 52 freshman English
class students;

� searching against approximately 300,000
records; and

2

� use of the 1985 version of the SMART system,
enhanced with our own code, including methods
for fast inverted file creation [18], running on a
VAX 11/785 under ULTRIX.

For more details see [14].
This hurried experiment was flawed in a number of

ways, prompting us to work on a more carefully de-
signed study. While it seemed clear that users liked
the vector methods, we lacked important data nec-
essary to analyze timing or effectiveness. Further,
controls relating to the interface were weak, clearly
creating a bias against the Boolean-type methods.
Finally, it became clear that more users, more ques-
tions, and more records would be needed to give
adequate statistical power and generalizability to our
findings.

2.3 1990 Study

Supported in part by grants from CLR and OCLC
Inc., we began work on a more careful experiment,
assisted by Linda Wilson of the Library. Numerous
library staff helped by:

� collecting questions from patrons, from which
our set of 18 was selected;

� carrying out repeated searches, and providing
expert judgments on those and on the searches
of the experimental subjects, to allow us to mea-
sure relative recall; and

� advising on the development of the experimen-
tal system and its testing.

A brief summary of some of our early efforts on this
project appears in [15].

We compared the same four retrieval methods con-
sidered in the 1987 study, but in most other aspects
this was a larger investigation, as can be seen in Table
1.

In all cases our interface operated on VT100 termi-
nals or terminals that emulated that type of behavior.
The display was organized into areas so that users
only needed to fill in forms. A simple, specially de-
signed editor was available for entering or changing
data in any of the screen areas.

We hypothesized that advanced retrieval methods
would be preferred and more effective than the con-
ventional Boolean approach, that p-norm would be

Table 1: Key Characteristics of 1990 Study

Characteristic Value
Number of users 216
Number of documents 500,000
Number of questions 18
Retrieval methods 4
Retrieval methods/user2
Searches/user 4
Search system SMART (extended)
Computer system Sequent (10 nodes)
Operating system Dynix (UNIX)

preferred to Boolean, and that the vector methods
would be particularly easy to use.

2.3.1 Experimental Design

The user interface was carefully controlled so that
the user experienced minimal differences while using
the several retrieval methods. Written instructions,
an online tutorial, and practice exercises all served to
facilitate a fair comparison of the retrieval methods.
Further, we tried to balance system performance so
that retrieval time was approximately the same for
each method.

By giving each user up to 90 minutes for the ex-
periment, and only paying them their $5 fee after
they had completed all tasks, we tried to ensure that
everyone was properly motivated and not hurried.
Most users finished soon after 60 minutes, though
some liked the system so much that they stayed an
extra hour to use it with their own questions.

Each user was randomly assigned to one of 12 test
groups, and worked with two methods, searching
using each method for two of the 18 test questions.
These groups allowed us to eliminate the effects of
the order of the two methods. Further, by having each
user search for records for each of four questions,
using two different methods, we were able to measure
intra-subject differences as well as between-subject
effects, adding to the power of the study.

To ensure generality of our results we balanced
the subjects with respect to gender, academic level
(freshman to senior to graduate student), and college.
We also collected the demographic data shown in
Table 2 by online questionnaire.

We gathered a great deal of other data for subse-
quent analysis. In particular, we logged each session

3

Table 2: Demographic Data Collected

No. of computer courses taken
Frequency of use of computers
Frequency of use of Virginia Tech OPAC
Frequency of use of other retrieval systems
Typing skills
Gender
User patience
Overall grade point average
Academic level
Academic area

(with timestamps), recorded retrieved documents and
those marked by the users as relevant, and collected
user comments in online questionnaires.

2.3.2 Results

Our analysis to date has only considered the online
questionnaires, and so primarily reflects user percep-
tions. We grouped all users together, since none of
the demographic factors listed in Table 2 was found
significant at thep = 0:05 level.

The most important (significant) findings are:

� Users generally felt that the documentation was
satisfactory and that the online tutorials pro-
vided sufficient introduction to the retrieval
methods.

� Users found it easy to formulate queries from
the given questions, for all retrieval methods.

� Users felt that methods that ranked the results
gave higher precision.

� Users felt that p-norm searching was best in
terms of finding more of the relevant documents
in a single search iteration while producing less
“noise.” In this regard, users also preferred the
two vector methods to Boolean.

� Users felt that vector searching with relevance
feedback was best in terms of finding a larger
total number of useful documents over all itera-
tions. Users also preferred p-norm to Boolean.

� Users felt that the easiest method to use was
vector with feedback, with Boolean the most
difficult. P-norm was easier than Boolean.

� Users felt that vector with feedback took the
least time to arrive at a satisfactory set of results,
with Boolean taking the most. The same was
found regarding being an effective aid for casual
search.

� Users preferred the vector methods to the
Boolean and p-norm methods regarding: ef-
fectiveness for comprehensive searching, ease
of learning, and ease of use.

� Users found the REVTOLC system easier to use
than Virginia Tech’s current OPAC system.

Further details regarding this experiment can be
found in [11]. Additional analysis of the data col-
lected is pending availability of adequate funding.

Our results seem to indicate that the type of in-
terface provided, and the vector with feedback re-
trieval method, would be well received by OPAC
users. Subsequent sections describe the consequent
development of a production system including these
features.

3 LEND

While working with REVTOLC, we learned a great
deal regarding requirements for a production system:

� With large numbers of records, there are numer-
ous situations in which efficient hashing meth-
ods would be helpful (e.g., to find a string in the
“dictionary,” to locate a record given its identi-
fier, to find an entry in an authority file, or to
look up a call number).

� Many types of “objects” are involved, and can
be efficiently described using inheritance.

� Caching and other methods that reduce disk ac-
cess lead to faster performance.

� Efficient management of data in memory and
on secondary storage devices is important, and
requires a significant amount of code.

These and other needs helped motivate work on the
Large External object-oriented Network Database
(LEND) system [7], which satisfies all of the above
requirements. First, LEND supports building of min-
imal perfect hash functions that are used internally
to optimize performance, and that can be built with

4

user data to guarantee minimum disk accesses and
near minimal space overhead. Second, LEND is an
object-oriented DBMS, that supports a class hierar-
chy with inheritance, so that all of the classes of
objects needed can be quickly defined, without un-
needed repetition of code. Third, LEND’s lowest or
storage layer supports objects in main memory, in
page sets, or in UNIX files. An LRU class allows
reasonable cache performance, a buffer class speeds
access to small objects, and page and UNIX file
classes simplify efficient accessing of disks. Fourth,
LEND’s object layer, operating atop and hiding the
details of the storage layer, supports efficient hash
indexing, caching, and buffering. Primitive classes
include integer, real, and string. Composite classes
include set, tuple, and list. Data access classes in-
clude several based on hashing, plus AVL trees for
in-memory data. Finally, LEND implements much
of the information graph model we have proposed
[7]. Thus, it allows us to support traditional DBMS,
IR, and knowledge-base processing through opera-
tions on a graph of objects. LEND has classes for
both nodes and arcs, includes several types of inter-
faces to support various views and sets of operations,
and has a query language allowing retrieval in terms
of nodes, arcs, paths, and graphs.

The second version of LEND was completed in
Spring 1992, using g++, and is being ported to
“vanilla” C++, removing dependence on the GNU
class system. LEND has been licensed by several or-
ganizations, and has been thoroughly tested and used
in the MARIAN OPAC system, discussed in the next
section.

4 MARIAN

The Multiple Access and Retrieval of Information
with ANnotations (MARIAN) system has been un-
der development at Virginia Tech since 1991. Our
aim was in part to rectify mechanical and conceptual
problems [4] of OPACs with techniques like [25]:
morphology-based matching, query expansion, au-
thority files, linking and terminological aids and di-
rect interfaces. We hoped to avoid command-line
style interaction and to have a system that could be
easily used with minimal training [24]. Our approach
was not only to enhance the interface but also to re-
design the underlying system, going beyond Boolean

VT
Network
(Internet)

NeXT
Clients

VM/CMS
 Clients

X/Motif
 Clients

MARIAN
 Server

 Mail
Clients

Curses
Clients

Figure 1: Client/Server with Multiple Interfaces.

queries [21]. The long term goal is to progress to-
ward a truly “intelligent” system with broad usabil-
ity and “smart” functionalities [22], building upon
our prior work with the COmposite Document Ex-
pert/extended/effective Retrieval (CODER) testbed
[13].

From the perspective of users, MARIAN is a cen-
tral server, holding library catalog data, as shown
in Figure 1. For those working on a NeXT or on
a workstation running X/Motif, a local client will
handle their interaction with the server. For those
connected via terminals to VM/CMS or a UNIX
system supporting CURSES terminal control, spe-
cialized clients interconnect the terminals with the
server. Finally, for any system supporting mail, in-
teraction with MARIAN will be possible using that
mode of communication.

To understand MARIAN in more detail, it is best
to follow an example of its use, as given in the next
subsection.

5

Figure 2: Query Entry.

Figure 3: Pop-up for Field Selection.

4.1 Example

Figures 2-6 illustrate current operations of MAR-
IAN, using screen dumps from a NeXT system with
the present version of our client software. Interac-
tion begins with a menu and optional login screen,
designed to provide password security as necessary.
After a user selectsNew Queryfrom the menu, a
query can be entered using a form-style window, as
shown in Figure 2.

Because users often want to search for the same
terms in several parts of the MARC records, a pop-up
selection panel is provided for query entry, as shown
in Figure 3.

Once the server locates, ranks, decompresses, and
sends back the desired number of records, these re-
sults are shown in a new window, as in Figure 4. In
the top pane a user can mark an item as relevant,
or select it, which causes it to be highlighted in that

Figure 4: Presentation of Results.

Figure 5: Query History.

pane and displayed in the bottom pane.

Users can work with any number of queries, sub-
mitting new ones before results have appeared, in
a flexible mixed-initiative style of interaction [16].
Therefore, it is important that a history of queries is
maintained, like that shown in Figure 5. This fea-
ture supports users asking to edit and/or resubmit
previously prepared queries.

The interface also supports various types of feed-
back searching, that will be handled by server code to
be completed early in 1993. The menu options shown
in Figure 6 illustrate that a user can ask for other
documents like the one that is currently selected, can
request standard relevance feedback from all docu-
ments selected as relevant, or can look for more items
(with lower ranks) retrieved by the current query.

Now that the basic operation of MARIAN has been
illustrated, further subsections provide details of the
design and implementation.

6

Figure 6: Initiating a Feedback Search.

4.2 Objects

To understand the operation of the object-oriented
MARIAN system, it is best to consider the types of
objects involved. This fits in well with our use of
LEND, and of the C++ and Objective-C languages.

Many of the objects managed by MARIAN are
persistent. These are handled by LEND over the
long-term, but are processed by the rest of the system
as needed.

4.2.1 Persistent Objects

There are six main types of persistent objects: (1) an-
notation, (2) text component, (3) authority, (4) doc-
ument, (5) link, and (6) inverted file entry. The first,
not yet in use, will support annotation of the cata-
log records. Short text blocks, i.e., collections of
strings, will be attached by library staff, faculty, and
students (with suitable editorial controls). We ex-
pect useful messages, critiques, recommendations,
and comments that will help future searchers.

The second includes standard strings and variants,
as well as various classes of numbers and numeric
codes. Standard strings include words found as lem-
mata in theCollins English Dictionary; variants in-
clude regular inflections and derivations computed
on the fly, as well as irregular forms derived from the
same source. These are particularly helpful for the
morphological processing carried out during docu-
ment and query indexing. Other strings not reducible
to words in the dictionary are added as they appear
in new documents.

The third type of information involves authorita-
tive or canonical representations.

Subject fields in library records are drawn from
the controlled vocabulary of theLibrary of Congress
Subject Headings(LCSH). These headings are ar-
ranged in a complex network including both hierar-
chical and non-hierarchical relations as well as mod-
ifications involving place, time, and content descrip-
tors. Personal and corporate names are likewise con-
trolled. Normalization of names is particularly im-
portant so that matches can be identified, and partial
matching must reliably handle problems with abbre-
viations, initials, titles, multi-part surnames, hyphen-
ation, and organization types. In both these cases,
identification of the objects satisfying a user query
involves more than matching text fields.

Fourth are the documents themselves, which we
preserve in their entirety with a lossless compression
based on Huffman coding. For the catalog records
we decompress into the standardMARC tape format
using ASCII/ANSEL characters, then reformat into
the user’s choice of human-readable display formats.
Where the user’s workstation or terminal permits,
clients map ANSEL characters to and from the local
expanded character set.

Fifth, in keeping with the philosophy of informa-
tion graph modeling, there are databases of links be-
tween documents and either names or subject head-
ings (thehasAuthorandhasSubjectrelations). This
representation allows the system to map in either di-
rection between MARC records and authors or LCSH
subjects.

Finally, for efficient retrieval, we have inverted
files for each text field in the subject, name, and
MARC record objects. Each has inverted index
entries that include weights, and hashing functions
that support fast access to each entry. We optimize
both space and processing time by having three sub-
classes: ONE for entries that occur in a single docu-
ment, FEW for entries that appear as a standard list of
postings, and MANY for terms so common that it is
only effective to search them in combination. Post-
ing lists for FEW terms are stored in non-increasing
order by weight. MANY terms are organized into a
lattice of posting lists where each node corresponds
to a combination of MANY terms.

7

4.2.2 Internal Objects

Since the MARIAN server has been coded largely in
C++, and the NeXTSTEP client is in C and Objec-
tive C, there are many internal objects. Among the
most important objects are: (1) choice, (2) query, (3)
retrieved list, and (4) document list.

Throughout an interaction with MARIAN, user
decisions are represented bychoiceobjects that in-
clude both the string and object identifier forms. Also
from users,queryobjects are obtained, structured in
conjunctive normal form so that complex Boolean as
well as vector expressions can be considered. The
basic constituents of these objects are any of the
various types of terms (e.g., English words, author
names, LCSH subjects) and their weights.

As the result of searching, aretrieved listis pre-
pared, that has three parts for each entry. First is the
identifier of the document to be retrieved. Second is
an estimate of its relevance; the list is ordered in de-
scending order of these values. Third is another ob-
ject that gives the evidence for this presumed match
— typically it indicates locations of query terms in
the document. Note that after a search, the retrieved
list is reduced to a simple list of document identifiers,
in the same order, for display. Thesedocument list
objects are also useful in other contexts.

4.3 Architecture and Protocols

While a great deal of the design of MARIAN is il-
lustrated in the above discussion, key aspects relate
to the system architecture and decisions regarding
communication protocols. Our objective of having a
low-cost, high efficiency system that could be easily
enhanced and incrementally grown to support in-
creases in data and transactions argued against the
approach taken in the REVTOLC study. In particu-
lar, having clients communicate with a server running
the SMART system [17] was not appropriate.

Rather, we sought an architecture with multiple
threads (at least one in each functional module for
each user transaction) to provide increased paral-
lelism, and that allowed processes to be distributed
as efficiency dictates across a network of worksta-
tions. NeXT computers seemed a good choice for
initial implementation, since the underlying MACH
operating system supports efficient message-based
interprocess communication on one or a collection
of workstations, as well as threads within a given

module. The MACH Interface Generator (MIG),
supported on NeXT and OSF/1 systems, is a pro-
gram that generates remote procedure calls (RPCs)
for efficient communication between processes and
(relatively) easy interchange of high level data struc-
tures [3]. MIG calls are used for all communication
inside the MARIAN server irrespective of the nodes
on which the linked modules are running.

Communication between clients and the MAR-
IAN server follows the User Interaction Protocol
(UIP) developed at Virginia Tech, supported by a
locally developed subroutine package [8]. UIP con-
sists of two layers. The upper layer corresponds to
the user interface objects described in Section 4.2.2.
The lower layer is a symmetrical, remote procedure
call protocol for the transport of user interface objects
between the MARIAN server and its clients. Data
encoding is provided by a combination of Sun’s eX-
ternal Data Representation (XDR) [9] and UIP spe-
cific data encoding procedures. The protocol runs as
an application layer protocol over TCP/IP. The im-
plementation of UIP is thread-safe for support of con-
currency in the MARIAN server. A version of UIP
that does not require threads is available for clients
running on platforms that do not support threads. We
decided not to use Z39.50 until it achieves a higher
level of functionality and the many proposed changes
and extensions to it are completed.

Our initial plan was to use two NeXT computers
as the main server, and to run CURSES-based clients
on a third NeXT. Since the CURSES package is not
thread-safe, each VT100-type terminal connecting
would require a separate process, encouraging sep-
aration of that load from the searching and other
activities.

5 Server Design

The MARIAN server has been carefully designed
[16] to be extensible and to ultimately become a
third-generation OPAC search system [22]. Figure 7
illustrates the server’s three layers: Interface Man-
agement, Access Method, and Database Manage-
ment. Dotted boxes indicate parts whose implemen-
tation has not yet been completed. Arrows indicate
the direction of MIG calls between modules.

Details on some of the most important modules
are given below:

8

VM
Interface
Manager

VM
Interface
Manager

X-Windows
Interface
Manager

X-Windows
Interface
Manager

NeXTStep
Interface
Manager

NeXTStep
Interface
Manager

CURSES
Interface
Manager

Session
Manager

UIP
Handler

VM
Interface
Manager

X-Windows
Interface
Manager

Combiner

Authority
Object

Searchers

Authority
Object Files

Text
Component
Searcher

Call
Number
Searcher

Interface Management Layer

MARC Record
File

Formatter

Parsers

Inverted File --
Text Component
/ Authority Object

Inverted File --
Text Component

/ Document

Link File --
Authority Object

/ Document

Mail
Handler

Query
Handler

Text Component
Files

Reverse Inverted
Files --

Doc / Objects

Annotation
File

Feedback Query
Synthesizer

Annotator

NeXTStep
Interface
Manager

CURSES
Interface
Manager

CURSES
Interface
Manager

Database Management Layer

Access Method Layer

Figure 7: Detailed Design for MARIAN.

� The UIP Handler is the interface between the
various user interface managers and the rest of
the system. Thus it helps enforce the princi-
ple of dialogue independence [19], allowing the
MARIAN server to function without regard to
the different types of clients. It does this by
implementing the hierarchy ofinteraction ob-
jectsdefined in the UIP protocol (see Section
4.3). The UIP Handler keeps track of the net-
work location of all active clients, and maps
calls for user interaction originating within the
server to UIP messages to objects owned by the
correct client. By the same token, it translates
UIP messages originated by a user action on an
interaction object into MIG calls on the server
module that created the object.

� TheSession Managerhandles user login, iden-
tification, access control, and accounting. It
oversees the progress of all currently active user
sessions, and of the major activities within each
session. It is responsible for much of the error
handling, and for graceful termination of inter-
nal processing associated with a stopped ses-
sion. Session status is maintained and can be
queried, so that “smart” clients can detect prob-
lems or unforeseen delays. Other MARIAN

modules report their progress at key points of
processing. Thus, the Session Manager brokers
all help requests, filling most from its under-
standing of the current session context. It is the
site for any future user modeling enhancements.
The Session Manager also maintains preference
data for each user across sessions, and may at
some point allow sessions to be saved and re-
stored.

� The Annotator, when completed, will act as a
note manager for the MARC records, with en-
tries linked as for hypertext. It will allow users
with proper authorization to add, edit, or exam-
ine annotations.

� The Query Handleris responsible for initiat-
ing all search and browse events. In the latter
case it helps the user choose the point at which
browsing should begin, manages the browsing
process, and in the event that something is iden-
tified to be used in a query, passes it to the appro-
priate parser. In the former, the Query Handler
creates aquery interaction object of the appro-
priate class, labels it, and sends it to the user via
the UIP Handler. (Figure 2 shows abiblioFor-
mQueryobject as realized by the NeXTSTEP
client.) For each query submitted by the user,
messages are sent simultaneously to the appro-
priate parser(s) for each field, as well as to the
Combiner so it may coordinate the search. For
feedback queries, the Feedback Query Synthe-
sizer is invoked. Finally, the Query Handler
keeps track of the query history of each session,
and allows users to select, edit, and resubmit
old queries.

� The variousParserstranslate user’s representa-
tions, usually sequences of characters, to system
representations, usually objects that are part of
the query object (see Section 4.2.2). They are
specialized to the field and type of data involved:

– Text, the default, assumes English words,
and is composed as shown in Figure 8. It
reduces running text to a linear combina-
tion (or term vector)of text component
IDs.

– Date identifies single dates or date ranges.

9

VectorizerTokenizer

Morphological
Analyzer

 Text Parser

To
Combiner To DB’s

From Query
Handler

Figure 8: Text Parser.

– Subject produces both a term vector and
a list indicating order of term occurrence,
for (partial) matching against the LCSH
authority entries.

– Author separates each author, and pre-
pares a sequence of representations like
those used by the Subject Parser.

� The variousSearchersreply to the Combiner,
returning either a retrieved set (see Section
4.2.2), a portion thereof, or an estimate of
its size. Similar processing takes place for
searchers involving both Text Components and
Authority Objects. Usually thek best items are
needed, and are found using a specially devel-
oped heuristic scheme forfrontier exploration
aimed at stopping the search as early as possi-
ble, under the assumptions that weights are used
and that similarity can be expressed as a sum of
partial similarities:

1. Terms with inverted file entries of class
ONE have their single documents added
directly to the candidate list.

2. Each term with class FEW entries has its
posting list scheduled for exploration.

3. Terms with class MANY entries are
merged into a single posting list for joint
exploration.

4. A frontier is established across the collec-
tion of posting lists, such that all postings

above the frontier are at least a certain
weight, and all below have less.

5. An associativeaccumulatorstores those
documents found in the explored region
above the current frontier, keeping track
of the k documents with highest partial
similarity.

6. If the topk documents in the accumula-
tor have stabilized, they are returned and
the exploration terminates. Otherwise, the
frontier is extended and step 5 is repeated.

� The Combiner is at the center of query pro-
cessing. It coordinates the search process, and
can schedule Searcher(s) to perform various
types of search. When partially specified au-
thority or high frequency text objects have too
many matches, it can request help from the user
through the UIP handler. Results go to the For-
matter.

� The Formatter receives from the Combiner a
single document identifier, a document list (see
Section 4.2.2), or an addition to a previous list.
These go to the user via the UIP Handler, for
subsequent selection and display.

The Database Management Layer of MARIAN
deals with the various persistent objects discussed in
Section 4.2.1. It relies upon the services of LEND,
as discussed in Section 3. Further details, especially
regarding performance, can be provided in the final
version of this paper.

5.1 Interface Design

Because of ease of development and testing, the
first MARIAN client has been developed using the
NeXTSTEP environment [26]. While most coding
in MARIAN has been in C++, interface-related rou-
tines followed the NeXTSTEP standard of using Ob-
jective C [10]. The object-oriented approach for
NeXTSTEP interface development fits in well with
the MARIAN philosophy. In particular, MARIAN’s
client/server communication using the UIP proto-
col involvesinteraction objects, some of which are
shown in Figure 9.

The NeXTSTEP client/server pair can be viewed
in terms of the ISO/OSI model of communication
(Figure 10). On the client side, the User Interface

10

Interaction ObjectInformation Object

Text

Short Text Long Text

Sequence of
Short Texts

Long Text with Short
Description (LTSD)

Sequence of
Long Texts

Long Text with
Sequence of Short Texts

Sequence of
LTSDs

String

Integer

Atom

Document

Book

Choice List

Titled Document

Hypernode

Retrieval Set (Ordered
Set of Titled Documents)

Represented By

Represented By
Represented By

Represented By

Represented By

Represented By

Represented By

Represented By

Represented By

Figure 9: Representation of Internal Information Objects by User-Manipulable Interaction Objects.

User Interface

UIP

TCP/IP

MARIAN Server

UIP

TCP/IP

Network

Workstation Server

Figure 10: Protocol Stack.

and UIP layers are the most important part of the
Application Layer, while on the server side the UIP
layer is at the “bottom” of the Application Layer.

The overall client/server processing on NeXT can
be seen more clearly in Figure 11. Here the roles
of TCP/IP, UIP, and MIG calls for communication
should be clear. For further details on the MARIAN
interface the reader is referred to [27].

5.2 User Testing

Development of the NeXTSTEP client proceeded in
parallel with the MARIAN server. Normal testing
procedures have been followed, to ensure correct be-
havior in terms of specifications. Also, we are com-

mitted to iterative refinement and careful usability
testing.

Consequently, in October 1992 a carefully selected
group of five individuals served for initial usability
testing, carried out in concert with another related re-
search effort (Project Envision [5]). The most impor-
tant shortcomings and additional requirements were:

� Provide more feedback, especially notifying the
user regarding: successful invocation of MAR-
IAN, search status after query submission, and
server failure.

� Reorganize menu options: renaming to better
express actions accomplished, and having hier-
archy reflect task organization.

� Provide better information on how the system
operates, e.g., explaining the ranking principle.

� Provide more control to users, e.g., maintain
user settings and selections regarding window
sizes, and format/order of results.

� Simplify the manner users accomplish tasks:
eliminate case sensitivity in query fields, add
buttons for frequent and rudimentary tasks in
spite of NeXTSTEP guidelines to use menus
instead, and allow users to select how results
are sorted (e.g., by alphabetical order or date as
opposed to rank).

The modular construction of MARIAN makes it
relatively easy to effect the necessary changes; most

11

UIP
Handler

Session
Manager

MARIAN Server

Other Retrieval
Server Processes

MIG messages

MIG messages

MIG messages

TCP/IP

Client
UIP

Usr
Interface

Application

Window
Server

NeXT Client workstation

Mach messages

Mach messages

User
Interface

Application

Figure 11: Client/Server Interprocess Communica-
tion.

have already been made. Further testing with larger
and more diverse groups will lead to iterative refine-
ment of the interface and server.

5.3 Current Status and Plans

The present version of MARIAN matches the design
given in Figure 7. Feedback searches, the X/Motif
interface, the CURSES interface, and Annotation are
the top priorities for development efforts. Regarding
data, the testing to-date has involved a subset of the
MARC records, numbering roughly 40K. Loading of
the full collection of roughly 900K documents should
be completed in January 1993, at which time alpha
testing will be opened to campus NeXT systems.

As part of completing MARIAN we will extend
the current skeletal help facility with context sensi-
tive, point-of-need help and online tutorials [29].

A running version of the MARIAN system will
be shown atSIGIR ’93, as part of the demonstration
segment of the program proposed by Professor Philip
Smith. By that time, the system should be in beta
testing on campus, open to those with NeXTSTEP or
X/Motif capable systems. Production deployment,
taking advantage of several other interfaces that are
under development, is scheduled for Fall 1993, to be
open for both Virginia Tech and other Internet users.

6 Future Plans

There are many prospects for MARIAN, including
logging of data regarding user interaction for tuning
and research, adding other retrieval methods, devel-
oping a Z39.50 interface, supporting other databases,
and making the system more “intelligent.”

One promising line of future investigation builds
upon work at Miami University of Ohio. We have
provided data from the current 40K record database
for experiments in clustering [30]. Results look
promising, and we expect to run the fast cluster-
ing algorithm involved [6] on the full collection. If
successful, this may lead to an additional type of
browsing and/or searching.

In parallel with work on MARIAN, LEND is being
enhanced further in connection with a Masters the-
sis that should be completed by Summer 1993, and
which will involve experimentation with the MAR-
IAN database [2]. A powerful query language and

12

efficient optimizing interpreter will be available, sup-
porting operations of hypertext, information retrieval
and multimedia applications. These benefits should
lead to greater efficiency as well as reduce devel-
opment costs connected with MARIAN’s Database
Management Layer.

Finally, MARIAN may be extended to support
full-text and hypertext publications including online
computer manuals and publications distributed by
ACM (in connection with Project Envision, our effort
to develop a user-centered hypermedia database from
the Computer Science literature [5]).

7 Acknowledgments

Many have helped with the work discussed. At the
Virginia Tech Library, Linda Wilson was the main
contact helping with REVTOLC, and Charles Litch-
field has been our main contact regarding MARIAN.
William Dougherty has provided data from the VTLS
system for our experimentation.

Tim Rhodes at the Virginia Tech Computing Cen-
ter did the initial design and implementation of the
NeXTSTEP client for MARIAN. Programming and
related work on MARIAN has also involved Steve
Teske, as well as a number of other staff members at
the Computing Center.

Numerous students have assisted in connection
with their Masters projects and theses. Ajay
Wadhawan and Whay Lee helped with the first
REVTOLC studies. Rajesh Ramachander developed
a performance monitoring tool for NeXTs that was
designed for MARIAN.

Recent usability testing was undertaken by Lucy
Nowell, with guidance and assistance from Deborah
Hix. Thanks also go to all the individuals who have
been subjects in the REVTOLC studies and in our
testing of MARIAN.

References

[1] N.J. Belkin et al. Taking account of users tasks,
goal, and behavior for the design of online pub-
lic access catalogs. InProceedings of the 53rd
ASIS Annual Meeting, ASIS ’90, pages 69–79,
Toronto, Nov. 4-8, 1990.

[2] Sangita C. Betrabet. A query language for
information graphs. Master’s thesis, Virginia

Tech, Dept. of Computer Science, to appear in
1993.

[3] Andrew D. Birrell and B. J. Nelson. Imple-
menting remote procedure calls.ACM Trans.
on Computer Systems, 2(1):39–59, 1984.

[4] Christine L. Borgman. Why are online catalogs
hard to use? Lessons learned from information
retrieval studies.Journal of the American So-
ciety for Information Science, 37(6):387–400,
November 1986.

[5] Dennis Brueni, Edward A. Fox, Lenwood
Heath, Deborah Hix, Lucy Nowell, William
Wake, and Bailey Cross. What if there was
desktop access to the computer science litera-
ture? InProc. ACM 1993 Computer Science
Conference, CSC ’93, Indianapolis, IN, Febru-
ary 1993.

[6] Fazli Can. Incremental clustering for dynamic
information processing.ACM Transactions on
Information Systems, 11(1):to appear, January
1993.

[7] Qi Fan Chen.An object-oriented database sys-
tem for efficient information retrieval applica-
tions. PhD thesis, Virginia Tech Dept. of Com-
puter Science, March 1992.

[8] Ben E. Cline, Robert K. France, and Edward A.
Fox. OPAC design document: MARIAN, June
1991. Unpublished Internal Communique.

[9] C.R. Corbin. The Art of Distributed Applica-
tions. Springer-Verlag, New York, 1991.

[10] Brad J. Cox. Object Oriented Programming:
An Evolutionary Approach. Addison-Wesley,
Reading, MA, 1981.

[11] Amjad M. Daoud.Efficient Data Structures for
Information Storage andRetrieval. PhD the-
sis, Virginia Tech Dept. of Computer Science,
1993. To appear.

[12] E. A. Fox. Extending the Boolean and Vec-
tor Space Models of Information Retrieval with
P-Norm Queries and Multiple Concept Types.
PhD thesis, Cornell University Dept. of Com-
puter Science, August 1983. Available from
University Microfilms Int.

13

[13] Edward A. Fox. Development of the CODER
system: A testbed for artificial intelligence
methods in information retrieval. Informa-
tion Processing & Management, 23(4):341–
366, 1987.

[14] Edward A. Fox. Testing the applicability of
intelligent methods for information retrieval.
Information Services and Use, 7(4-5):119–138,
1988.

[15] Edward A. Fox. Advanced retrieval methods
for online catalogs. InAnnual Review of OCLC
Research, July 1989 to June 1990, pages 32–34.
OCLC Online Computer Library Center, Inc.,
Dublin, OH, 1989-1990.

[16] Robert K. France. User interface objects for
CODER, INCARD, and MARIAN, August
1992. Unpublished Internal Communique.

[17] Nasser K. Ghazi. Development of a user inter-
face for the MARIAN system and a server for
the SMART system. Master’s thesis, Virginia
Tech, Dept. of Computer Science, September
1991.

[18] D. Harman, E. A. Fox, R. Baeza-Yates, and
W. C. Lee. Inverted files. In W. Frakes and
R. Baeza-Yates, editors,Information Retrieval:
Data Structures & Algorithms, pages 28–43.
Prentice-Hall, Engelwood Cliffs, NJ, 1992.

[19] H. Rex Hartson and Deborah Hix. Human-
computer interface development: Concepts and
systems.ACM Computing Surveys, 21(1):5–92,
March 1989.

[20] Charles R. Hildreth. Online public access cat-
alogs. Annual Review of Information Science
and Technology, 20:233–286, 1985.

[21] Charles R. Hildreth. Beyond Boolean: De-
signing the next generation of online catalogs.
Library Trends, 35:647–667, Spring 1987.

[22] Charles R. Hildreth.Intelligent Interfaces and
Retrieval Methods. Library of Congress, Wash-
ington, D.C., 1989.

[23] Ray Larson. Classification clustering, prob-
abilistic information retieval, and the online

catalog. The Library Quarterly, 61:133–173,
April 1991.

[24] William H. Mishco and Jounghyoun Lee. End-
user searching of bibliographic databases. In
Martha E. Williams, editor,Annual Review
of Information Science and Technology, vol-
ume 22, pages 227–264. Elsevier Science Pub-
lishers, New York, NY, 1987. ISBN 0-444-
70320-0.

[25] N. N. Mitev. Human computer interaction and
online catalogues. InOPACs and Beyond, Pro-
ceedings of a Joint Meeting of the British Li-
brary, DBMIST, and OCLC, 1988.

[26] NeXT Computers, Inc. NeXTstep Concepts.
NeXT Computers, Inc., 1990.

[27] Eskinder Sahle. Development of a user inter-
face for MARIAN and CODER systems. Mas-
ter’s thesis, Virginia Tech, Dept. of Computer
Science, January 1993.

[28] G. Salton, E.A. Fox, and H. Wu. Extended
Boolean information retrieval. Communica-
tions of the Association for Computing Machin-
ery, 26(11):1022–1036, November 1983.

[29] B. Shneiderman.Designing the User Interface:
Strategies for Effective Human-Computer In-
teraction, 2nd ed.Addison-Wesley, Reading,
MA, 1992.

[30] Cory Snavely. Implementation of a cover
coefficient-based incremental clustering algo-
rithm for very large document databases. Tech-
nical report, SAN Departmental Honors Pro-
gram, Miami Univ. of Ohio, Dec. 16, 1992.

[31] M. Yee. System design and cataloging meet
the user: User interfaces to online public acess
catalogs.Journal of the American Society for
Information Science, 42(2):78–98, 1991.

14

